Расчет общего напряжения цепи. ДЗ - Расчёт сложной цепи постоянного тока. Последовательное соединение нелинейных элементов

Основы > Задачи и ответы > Постоянный электрический ток

Методы расчета цепей постоянного тока


Цепь состоит из ветвей, имеет узлов и источников тока. Приводимые далее формулы пригодны для расчета цепей, содержащих и источники напряжения и источники тока. Они справедливы и для тех частных случаев: когда в цепи имеются только источники напряжения или только источники тока.

Применение законов Кирхгофа. Обычно в цепи известны все источники ЭДС и источники токов и все сопротивления. В этом случае устанавливается число неизвестных токов, равное . Для каждой ветви задаются положительным направлением тока.
Число У взаимонезависимых уравнений, составляемых по первому закону Кирхгофа, равно числу узлов без единицы. Число взаимонезависимых уравнений, составляемых по второму закону Кирхгофа,

При составлении уравнений по второму закону Кирхгофа следует выбирать независимые контуры, не содержащие источников тока. Общее число уравнений, составляемых по первому и по второму законам Кирхгофа, равно числу неизвестных токов.
Примеры приведены в задачах раздела .

Метод контурных токов (Максвелла). Этот метод позволяет уменьшить количество уравнений системы до числа К, определяемого формулой (0.1.10). Он основан на том, что ток в любой ветви цепи можно представить в виде алгебраической суммы контурных токов, протекающих по этой ветви. При пользовании этим методом выбирают и обозначают контурные токи (по любой ветви должен проходить хотя бы один выбранный контурный ток). Из теории известно, что общее число контурных токов . Рекомендуется выбирать контурных токов так, чтобы каждый из них проходил через один источник тока (эти контурные токи можно считать совпадающими с соответствующими токами источников тока и они обычно являются заданными условиями задачи), а оставшиеся контурных токов выбирать проходящими по ветвям, не содержащим источников тока. Для определения последних контурных токов по второму закону Кирхгофа для этих контуров составляют К уравнений в таком виде:



где - собственное сопротивление контура n (сумма сопротивлений всех ветвей, входящих в контур n ); - общее сопротивление контуров n и l , причем , если направления контурных токов в общей ветви для контуров n и l совпадают, то положительно , в противном случае отрицательно ; - алгебраическая сумма ЭДС, включенных в ветви, образующие контур n; - общее сопротивление ветви контура n с контуром, содержащим источник тока .
Примеры приведены в задачах раздела .

Метод узловых напряжений. Этот метод позволяет уменьшить количество уравнений системы до числа У, равного количеству узлов без одного

Сущность метода заключается в том, что вначале решением системы уравнений (0.1.13) определяют потенциалы всех узлов схемы, а токи ветвей, соединяющих узлы, находят с помощью закона Ома.
При составлении уравнений по методу узловых напряжений вначале полагают равным нулю потенциал какого-либо узла (его называют базисным). Для определения потенциалов оставшихся узлов составляется следующая система уравнений:


Здесь - сумма проводимостей ветвей, присоединенных к узлу s; - сумма проводимостей ветвей, непосредственно соединяющих узел s с узлом q ; - алгебраическая сумма произведений ЭДС ветвей, примыкающих к узлу s , на их проводимости; при этом со знаком « + » берутся те ЭДС, которые действуют в направлении узла s, и со знаком «-» - в направлении от узла s; - алгебраическая сумма токов источников тока, присоединенных к узлу s; при этом со знаком « + » берутся те токи, которые направлены к узлу s , а со знаком « -» - в направлении от узла s.
Методом узловых напряжений рекомендуется пользоваться в тех случаях, когда число уравнений меньше числа уравнений, составленных по методу контурных токов.
Если в схеме некоторые узлы соединяются идеальными источниками ЭДС, то число У уравнений, составляемых по методу узловых напряжений, уменьшается:

где - число ветвей, содержащих только идеальные источники ЭДС.
Примеры приведены в задачах раздела .
Частный случай-двухузловая схема. Для схем, имеющих два узла (для определенности узлы а и
b ), узловое напряжение

где - алгебраическая сумма произведений ЭДС ветвей (ЭДС считаются положительными, если они направлены к узлу а, и отрицательными, если от узла а к узлу b ) на проводимости этих ветвей; - токи источников тока (положительны, если они направлены к узлу а, и отрицательны, если направлены от узла а к узлу b ) ; - сумма проводимостей всех ветвей, соединяющих узлы а и b .


Принцип наложения. Если в электрической цепи заданными значениями являются ЭДС источников и токи источников тока, то расчет токов на основании принципа наложения состоит в следующем. Ток в любой ветви можно рассчитать как алгебраическую сумму токов, вызываемых в ней ЭДС каждого источника ЭДС отдельно и током, проходящим по этой же ветви от действия каждого источника тока. При этом надо иметь в виду, что когда ведется расчет токов, вызванных каким-либо одним источником ЭДС или тока, то остальные источники ЭДС в схеме заменяются короткозамкнутыми участками, а ветви с источниками тока остальных источников отключаются (ветви с источниками тока размыкаются).

Эквивалентные преобразования схем. Во всех случаях преобразования замена одних схем другими, им эквивалентными, не должна привести к изменению токов или напряжений на участках цепи, не подвергшихся преобразованию.
Замена последовательно соединенных сопротивлений одним эквивалентным. Сопротивления соединены последовательно, если они обтекаются одним и тем же током (например, сопротивления
соединены последовательно (см. рис. 0.1,3), также последовательны сопротивления ).
n последовательно соединенных сопротивлений, равно сумме этих сопротивлений

При последовательном соединении n сопротивлений напряжения на них распределяются прямо пропорционально этим сопротивлениям

В частном случае двух последовательно соединенных сопротивлений

где U - общее напряжение, действующее на участке цепи, содержащем два сопротивления (см. рис. 0.1.3).
Замена параллельно соединенных сопротивлений одним эквивалентным. Сопротивления соединены параллельно, если вес они присоединены к одной парс узлов, например, сопротивления
(см. рис. 0.1.3).
Эквивалентное сопротивление цепи, состоящей из
n параллельно соединенных сопротивлений (рис. 0.1.4),


В частном случае параллельного соединения двух сопротивлений эквивалентное сопротивление

При параллельном соединении n сопротивлений (рис. 0.1.4, а) токи в них распределяются обратно пропорционально их сопротивлениям или прямо пропорционально их проводимостям

Ток в каждой из них вычисляется через ток I в неразветвленной части цепи

В частном случае двух параллельных ветвей (рис. 0.1.4, б)

Замена смешанного соединения сопротивлений одним эквивалентным. Смешанное соединение это сочетание последовательного и параллельного соединений сопротивлений. Например, сопротивления (рис. 0.1.4, б) соединены смешанно. Их эквивалентное сопротивление

Формулы преобразования треугольника сопротивлений (рис. 0.1.5, а) в эквивалентную звезду сопротивлений (рис. 0.1.5, б), и наоборот, имеют такой вид:

Метод эквивалентного источника (метол активного двухполюсника, или метод холостого хода и короткого замыкания). Применение метода целесообразно для определения тока в какой-либо одной ветви сложной электрической цепи. Рассмотрим два варианта: а) метод эквивалентного источника ЭДС и б) метод эквивалентного источника тока.
При методе эквивалентного источника ЭДС для нахождения тока I в произвольной ветви ab, сопротивление которой R (рис. 0.1.6, а , буква А означает активный двухполюсник), надо эту ветвь разомкнуть (рис. 0.1.6, б), а часть цепи, подключенную к этой ветви, заменить эквивалентным источником с ЭДС и внутренним сопротивлением (рис. 0.1.6, в).
ЭДС
этого источника равняется напряжению на зажимах разомкнутой ветви (напряжение холостого хода):

Расчет схем в режиме холостого хода (см. рис. 0.1.6, б) для определения проводится любым известным методом.
Внутреннее сопротивление
эквивалентного источника ЭДС равняется входному сопротивлению пассивной цепи относительно зажимов а и b исходной схемы, из которой исключены все источники [источники ЭДС заменены короткозамкнутыми участками, а ветви с источниками тока отключены (рис. 0.1.6, г); буква П указывает на пассивный характер цепи], при разомкнутой ветви ab. Сопротивление можно вычислить непосредственно по схеме рис. 0.1.6, г.
Ток в искомой ветви схемы (рис. 0.1.6, д), имеющей сопротивление R, определяют по закону Ома:

В цепи постоянного тока действуют постоянные напряжения, протекают постоянные токи и присутствуют только резистивные элементы (сопротивления).

Идеальным источником напряжения называют источник, напряжение на зажимах которого, создаваемое внутренней электродвижущей силой (ЭДС ), на зависит от формируемого им в нагрузке тока (рис. 6.1а). При этом имеет место равенство . Вольтамперная характеристика идеального источника напряжения показана на рис. 6.1б.

Идеальным источником тока называют источник, который отдает в нагрузку ток, не зависящий от напряжения на зажимах источника, Рис. 6.2а. Его вольтамперная характеристика показана на рис. 6.2б.

В сопротивлении связь между напряжением и током определяется законом Ома в виде

Пример электрической цепи показан на рис. 6.3. В ней выделяются ветви , состоящие из последовательного соединения нескольких элементов (источника E и сопротивления ) или одного элемента ( и ) и узлы - точки соединения трех и более ветвей, отмеченные жирными точками. В рассмотренном примере имеется ветви и узла.

Кроме того, в цепи выделяются независимые замкнутые контуры , не содержащие идеальные источники тока. Их число равно . В примере на рис. 6.3 их число , например, контуры с ветвями E и , показанные на рис. 6.3 овалами со стрелками, указывающими положительное направление обхода контура.

Связь токов и напряжений в цепи определяется законами Кирхгофа.

Первый закон Кирхгофа : алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю,

Втекающие в узел токи имеют знак плюс, а вытекающие минус.

Второй закон Кирхгофа : алгебраическая сумма напряжений на элементах замкнутого независимого контура равна алгебраической сумме ЭДС идеальных источников напряжения, включенных в этом контуре,

Напряжения и ЭДС берутся со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в противном случае используется знак минус.

Для приведенного на рис. 6.3 примера по закону Ома получим подсистему компонентных уравнений

По законам Кирхгофа подсистема топологических уравнений цепи имеет вид

Расчет на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна вели-

чина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 6.4, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .


Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 6.4 ных сопротивлений и ),

Напряжение на источнике тока (на сопротивлении ) равно

Затем можно найти токи ветвей

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

Расчет цепи по уравнениям Кирхгофа

Проведем расчет токов и напряжений в цепи, показанной на рис. 6.3 при и . Цепь описывается системой уравнений (6.4) и (6.5), из которой для токов ветвей получим

Из первого уравнения выразим , а из третьего

Тогда из второго уравнения получим

и, следовательно

Из уравнений закона Ома запишем

Например, для цепи на рис. 6.3 в общем виде получим

Подставляя в левую часть равенства (6.11) полученные ранее выражения для токов, получим

что соответствует правой части выражения (6.11).

Аналогичные расчеты можно проделать и для цепи на рис. 6.4.

Условие баланса мощностей позволяет дополнительно контролировать правильность расчетов.

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.

Пример 1

Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r = 0,5 Ом. Сопротивления резисторов R 1 = 20 и R 2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи.

Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов.

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем.

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей .

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.


Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2

Общий ток цепи, содержащей два соединенных параллельно резистора R 1 =70 Ом и R 2 =90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Два последовательно соединенных резистора ничто иное, как делитель тока . Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов.

Токи в резисторах

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала рассчитать сопротивление цепи

А затем напряжение

Зная напряжения, найдем токи, протекающие через резисторы

Как видите, токи получились теми же.

Пример 3

В электрической цепи, изображенной на схеме R 1 =50 Ом, R 2 =180 Ом, R 3 =220 Ом. Найти мощность, выделяемую на резисторе R 1 , ток через резистор R 2 , напряжение на резисторе R 3 , если известно, что напряжение на зажимах цепи 100 В.


Чтобы рассчитать мощность постоянного тока, выделяемую на резисторе R 1 , необходимо определить ток I 1 , который является общим для всей цепи. Зная напряжение на зажимах и эквивалентное сопротивление цепи, можно его найти.

Эквивалентное сопротивление и ток в цепи


Отсюда мощность, выделяемая на R 1

Суть расчетов заключается, как правило, в том, чтобы по известным значениям всех сопротивлений цепи и параметров источников (ЭДС или тока) определить токи во всех ветвях и напряжения на всех элементах (сопротивлениях) цепи.

Для расчета электрических цепей постоянного тока могут применяться различные методы. Среди них основными являются:

– метод, основанный на составлении уравнений Кирхгофа;

– метод эквивалентных преобразований;

– метод контурных токов;

– метод наложения;

– метод узловых потенциалов;

– метод эквивалентного источника;

Метод, основанный на составлении уравнений Кирхгофа, является универсальным и может применяться как для одноконтурных, так и для многоконтурных цепей. При этом количество уравнений, составленных по второму закону Кирхгофа, должно быть равно количеству внутренних контуров схемы.

Количество уравнений, составленных по первому закону Кирхгофа, должно быть на единицу меньше количества узлов в схеме.

Например, для данной схемы

составляется 2 уравнения по 1-му закону Кирхгофа и 3 уравнения по 2-му закону Кирхгофа.

Рассмотрим остальные методы расчета электрических цепей:

Метод эквивалентных преобразований применяется для упрощения схем и расчетов электрических цепей. Под эквивалентным преобразованием понимается такая замена одной схемы другой, при которой электрические величины схемы в целом не меняются (напряжение, ток, потребляемая мощность остаются неизменными).

Рассмотрим некоторые виды эквивалентных преобразований схем.

а). последовательное соединение элементов

Общее сопротивление последовательно соединенных элементов равно сумме сопротивлений этих элементов.

R Э =Σ R j (3.12)

R Э =R 1 +R 2 +R 3

б). параллельное соединение элементов.

Рассмотрим два параллельно соединенных элемента R1 и R 2 . Напряжение на этих элементах равны, т.к. они подключены к одним и тем же узлам а и б.

U R1 = U R2 = U АБ

Применяя закон Ома получим

U R1 =I 1 R 1 ; U R2 =I 2 R 2

I 1 R 1 =I 2 R 2 или I 1 / I 2 =R 2 / R 1

Применим 1-й закон Кирхгофа к узлу (а)

I – I 1 – I 2 =0 или I=I 1 +I 2

Выразим токи I 1 и I 2 через напряжения получим

I 1 = U R1 / R 1 ; I 2 = U R2 / R 2

I= U АБ / R 1 + U АБ / R 2 = U АБ (1 / R 1 +1/R 2)

В соответствии с законом Ома имеем I=U АБ / R Э; где R Э – эквивалентное сопротивление

Учитывая это, можно записать

U АБ / R Э = U АБ (1 / R 1 +1 / R 2),

1/R Э =(1 / R 1 +1/R 2)

Введем обозначения: 1/R Э =G Э – эквивалентная проводимость

1/R 1 =G 1 – проводимость 1-го элемента

1/R 2 =G 2 – проводимость 2-го элемента.

Запишем уравнение (6) в виде

G Э =G 1 +G 2 (3.13)

Из этого выражения следует, что эквивалентная проводимость параллельно соединенных элементов равна сумме проводимостей этих элементов.

На основе (3.13) получим эквивалентное сопротивление

R Э =R 1 R 2 / (R 1 +R 2) (3.14)

в). Преобразование треугольника сопротивлений в эквивалентную звезду и обратное преобразование.

Соединение трех элементов цепи R 1 , R 2 , R 3 , имеющее вид трех лучевой звезды с общей точкой (узлом), называется соединением “звезда”, а соединение этих же элементов, при котором они образуют стороны замкнутого треугольника – соединением “треугольник”.

Рис.3.14. Рис.3.15.

соединение – звезда () соединение – треугольник ()

Преобразование треугольника сопротивлений в эквивалентную звезду проводится по следующим правилу и соотношениям:

Сопротивление луча эквивалентной звезды равно произведению сопротивлений двух примыкающих сторон треугольника, деленному на сумму всех трех сопротивлений треугольника.

Преобразование звезды сопротивлений в эквивалентный треугольник производится по следующим правилу и соотношениям:

Сопротивление стороны эквивалентного треугольника равно сумме сопротивлений двух примыкающих лучей звезды плюс произведение этих двух сопротивлений, деленное на сопротивление третьего луча:

г). Преобразование источника тока в эквивалентный источник ЭДС Если в схеме имеется один или несколько источников тока, то часто для удобства расчетов следует заменить источники тока на источники ЭДС

Пусть источник тока имеет параметры I К и G ВН.

Рис.3.16. Рис.3.17.

Тогда параметры эквивалентного источника ЭДС можно определить из соотношений

E Э =I К / G ВН; R ВН.Э =1 / G ВН (3.17)

При замене источника ЭДС эквивалентным источником тока необходимо использовать следующие соотношения

I К Э =E / R ВН; G ВН, Э =1 / R ВН (3.18)

Метод контурных токов.

Этот метод применяется, как правило, при расчетах многоконтурных схем, когда число уравнений, составленных по 1-му и 2-му законам Кирхгофа, равно шести и более.

Для расчета по методу контурных токов в схеме сложной цепи определяются и нумеруются внутренние контуры. В каждом из контуров произвольно выбирается направление контурного тока, т.е. тока, замыкающегося только в данном контуре.

Затем для каждого контура составляется уравнение по 2-му закону Кирхгофа. При этом, если какое-либо сопротивление принадлежит одновременно двум смежным контурам, то напряжение на нем определяется как алгебраическая сумма напряжений, создаваемых каждым из двух контурных токов.

Если количество контуров n , то и уравнений будет n. Решая данные уравнения (методом подстановки или определителей), находят контурные токи. Затем, используя уравнения, записанные по 1-му закону Кирхгофа, находят токи в каждой из ветвей схемы.

Запишем контурные уравнения для данной схемы.

Для 1-го контура:

I 1 R 1 +(I 1 +I 2)R 5 +(I I +I III)R 4 =E 1 -E 4

Для 2-го контура

(I I +I II)R 5 + I II R 2 +(I II -I III)R 6 =E 2

Для 3-го контура

(I I +I III)R 4 +(I III -I II)R 6 +I III R 3 =E 3 -E 4

Производя преобразования запишем систему уравнений в виде

(R 1 +R 5 +R 4)I I +R 5 I II +R 4 I III =E 1 -E 4

R 5 I I +(R 2 +R 5 +R 6) I II -R 6 I III =E 2

R 4 I I -R 6 I II +(R 3 +R 4 +R 6) I III =E 3 -E 4

Решая данную систему уравнений, определяем неизвестные I 1 , I 2 , I 3 . Токи в ветвях определяются, используя уравнения

I 1 = I I ; I 2 = I II ; I 3 = I III ; I 4 = I I + I III ; I 5 = I I + I II ; I 6 = I II – I III

Метод наложений.

Этот метод основан на принципе наложения и применяется для схем с несколькими источниками электроэнергии. Согласно этому методу при расчете схемы, содержащей несколько источников э.д.с. , поочередно полагаются равными нулю все ЭДС, кроме одной. Производится расчет токов в схеме, создаваемой одной этой ЭДС. Расчет производится отдельно для каждой ЭДС, содержащейся в схеме. Действительные значения токов в отдельных ветвях схемы определяются как алгебраическая сумма токов, создаваемых независимым действием отдельных ЭДС.

Рис.3.20. Рис.3.21.

На рис. 3.19 исходная схема, а на рис.3.20 и рис.3.21 схемы замещается с одним источником в каждой.

Производится расчет токов I 1 ’ , I 2 ’ , I 3 ’ и I 1 ” , I 2 ” , I 3 ” .

Определяются токи в ветвях исходной схемы по формулам;

I 1 =I 1 ’ -I 1 ” ; I 2 = I 2 ” -I 2 ’ ; I 3 =I 3 ’ +I 3 ”

Метод узловых потенциалов

Метод узловых потенциалов позволяет уменьшить число совместно решаемых уравнений до У – 1, где У – число узлов схемы замещения цепи. Метод основан на применении первого закона Кирхгофа и заключается в следующем:

1. Один узел схемы цепи принимаем базисным с нулевым потенциалом. Такое допущение не изменяет значения токов в ветвях, так как – ток в каждой ветви зависит только от разностей потенциалов узлов, а не от действительных значений потенциалов;

2. Для остальных У - 1 узлов составляем уравнения по первому закону Кирхгофа, выражая токи ветвей через потенциалы узлов.

При этом в левой части уравнений коэффициент при потенциале рассматриваемого узла положителен и равен сумме проводимостей сходящихся к нему ветвей.

Коэффициенты при потенциалах узлов, соединенных ветвями с рассмат- риваемым узлом, отрицательны и равны проводимостям соответствующих ветвей. Правая часть уравнений содержит алгебраическую сумму токов ветвей с источниками токов и токов короткого замыкания ветвей с источниками ЭДС, сходящихся к рассматриваемому узлу, причем слагаемые берутся со знаком плюс (минус), если ток источника тока и ЭДС направлены к рассматриваемому узлу (от узла).

3. Решением составленной системы уравнений определяем потенциалы У-1 узлов относительно базисного, а затем токи ветвей по обобщен- ному закону Ома.

Рассмотрим применение метода на примере расчета цепи по рис. 3.22.

Для решения методом узловых потенциалов принимаем
.

Система узловых уравнений: число уравнений N = N y – N B -1,

где: N y = 4 – число узлов,

N B = 1 – число вырожденных ветвей (ветви с 1-м источником ЭДС),

т.е. для данной цепи: N = 4-1-1=2.

Составляем уравнения по первому закону Кирхгоф для (2) и (3) узлов;

I2 – I4 – I5 – J5=0; I4 + I6 –J3 =0;

Представим токи ветвей по закону Ома через потенциалы узлов:

I2 = (φ2 − φ1) / R2 ; I4 = (φ2 +E4 − φ3) / R4

I5 = (φ2 − φ4) / R5 ; I6 = (φ3 – E6 − φ4) / R6;

где,

Подставив эти выражения в уравнения токов узлов, получим систему;

где
,

Решая систему уравнений численным методом подстановки или определи- телей находим значения потенциалов узлов, а по ним значения напряжений и токов в ветвях.

Метод Эквивалентного источника (активного двухполюсника)

Двухполюсником называется цепь, которая соединяется с внешней частью через два вывода – полюса. Различают активные и пассивные двухполюсники.

Активный двухполюсник содержит источники электрической энергии, а пас- сивный их не содержит. Условные обозначения двухполюсников прямоугольни- ком с буквой А для активного и П для пассивного (рис. 3.23.)

Для расчета цепей с двухполюсниками последние представляют схемами заме -щения. Схема замещения линейного двухполюсника определяется его вольт-амперной или внешней характеристикой V (I). Вольт-амперная характеристика пассивного двухполюсника – пря мая. Поэтому его схема замещения представ- ляется резистивным элементом с сопротивлением:

rвх = U/I (3.19)

где: U – напряжение между выводами, I-ток и rвх – входное сопротивление.

Вольт-амперную характеристику активного двухполюсника (рис. 3.23, б) можно построить по двум точкам, соответствующим режимам холостого хода, т. е. при г н = °°, U = U х, I = 0, и короткого замыкания, т. е. при г н =0, U = 0, I =Iк. Эта характеристика и ее уравнение имеет вид:

U = U х – г эк I = 0 (3.20)

г эк = U х / Iк (3.21)

где: г эк – эквивалентное или выходное сопротивление двухполюсника, совпа-

дают с одноименными характеристикой и уравнением источника электроэнер- гии, представляемого схемами замещения на рис. 3.23.

Итак, активный двухполюсник представляется эквивалентным источником с ЭДС – Е эк = U х и внутренним сопротивлением – г эк = г вых (рис. 3.23, а) Пример активного двухполюсника.- гальванический элемент. При изменении тока в пределах 0

Если приемник с сопротивлением нагрузки г н подключен к активному двух- полюснику, то его ток определяется по методу эквивалентного источника:

I = Е эк / (г н + г эк) = U х / (г н + г вых) (3.21)

В качестве примера рассмотрим расчет тока I в цепи на рис 3.24, а методом эквивалентного источника. Для расчета напряжения холостого хода U х между выводами а и Ъ активного двухполюсника разомкнем ветвь с резистивным элементом г н (рис. 3.24, б).

Применяя метод наложения и учитывая симметрию схемы, находим:

U х =J г / 2 + Е / 2

Заменив источники электрической энергии (в этом примере источники ЭДС и тока) активного двухполюсника резистивными элементами с сопротивлениями, равными внутренним сопротивлениям соответствующих источников (в этом примере нулевым для источника ЭДС и бесконечно большим для источника тока сопротивлениями), получим выходное сопротивление (сопротивление измеренное на выводах а и б) г вых = г/2 (рис.3.24, в). По (3.21) искомый ток:

I = (J г / 2 + Е / 2) / (г н + r / 2) .

Определение условий передачи приемнику максимальной энергии

В устройствах связи, в электронике, автоматике и т. д. часто желательно передать от источника к приемнику (исполнительному механизму) наибольшую энергию, причем КПД передачи имеет второстепенное значение в силу малости энергии. Рассмотрим общий случай питания приемника от активного двухполюсника, на рис. 3.25 последний представлен эквива- лентным источником с ЭДС Е эк и внутренним сопротивлением г эк.

Определим мощности Рн,РЕ и КПД передачи энергии:

Рн = U н I = (Е эк – г эк I) I ; РЕ = Е эк I = (г н – г эк I) I 2

η= Рн / РЕ 100% = (1 – г эк I / Е эк) 100%

При двух предельных значениях сопротивления г н = 0 и г н = °° мощность приемника равна нулю, так как в первом случае равно нулю напряжение между выводами приемника, а во втором случае – ток в цепи. Следовательно, некоторому определенному значению г н соответствует наибольшее возможное (при данных е эк и г эк) значение мощности приемника. Чтобы определить это значение сопротивления, приравняем нулю первую производную от мощности р н по г н и получим:

(г эк – г н) 2 – 2 г н г эк -2 г н 2 = 0

откуда следует, что при условии

г н = г эк (3.21)

мощность приемника будет максимальна:

Рн max = г н (Е 2 эк / 2 г н) 2 = Е 2 эк / 4 г н I (3.22)

Равенство (1.38) называется условием максимальной мощности приемника, т.е. передачи максимальной энергии.

На рис. 3.26 приведены зависимости Рн,РЕ, U н и η от тока I.

ТЕМА 4: ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО

Переменным называется периодически изменяющийся по направлению и амплитуде электрический ток. При этом, если переменный ток изменяется по синусоидальному закону – он называется синусоидальным, а если нет – несинусоидальым. Электрическая цепь с таким током называется цепью переменного (синусоидального или несинусоидального) тока.

Электротехнические устройства переменного тока находят широкое приме- нение в различных областях народного хозяйства, при генерировании, передаче и трансформировании электрической энергии, в электроприводе, бытовой тех- нике, промышленной электронике, радиотехнике и т. д.

Преимущественное распространение электротехнических устройств пере- менного синусоидального тока обусловлено рядом причин.

Современная энергетика основана на передаче энергии на дальние расстояния при помощи электрического тока. Обязательным условием такой передачи является возможность простого и с малыми потерями энергии преобразова- ния тока. Такое преобразование осуществимо лишь в электротехнических устройствах переменного тока - трансформаторах. Вследствие громадных преимуществ трансформирования в современной электроэнергетике приме- няется прежде всего синусоидальный ток.

Большим стимулом для разработки и развития электротехнических уст- ройств синусоидального тока является возможность получения источников электрической энергии большой мощности. У современных турбогенераторов тепловых электростанций мощность равна100-1500 МВт на один агрегат, большие мощности имеют и генераторы гидростанций.

К наиболее простым и дешевым электрическим двигателям относятся асин- хронные двигатели переменного синусоидального тока, в которых отсутствуют движущиеся электрические контакты. Для электроэнергетических установок (в частности, для всех электрических станций) в России и в большинстве стран мира принята стандартная частота 50 Гц (в США – 60 Гц). Причина такого выбора простые: понижение частоты неприемлемо, так как уже при частоте тока 40 Гц лампы накаливания заметно для глаза мигают; повышение часто- ты нежелательно, так как пропорционально частоте растет ЭДС само индукции, отрицательно влияющая на передачу энергии по проводам” и работу многих электротехнических устройств. Эти соображения, однако, не ограничивают при- менение переменного тока других частот для решения различных технических и научных задач. Например, частота переменного синусоидального тока элек- три ческих печей для выплавки тугоплавких металлов составляет до 500Гц.

В радиоэлектроннике применяются высокочастотные (мегогерцовые) устрой- ства, так на таких частотах повышается излучение электромагнитных волн.

В зависимости от числа фаз электрические цепи переменного с тока под- разделяются на однофазные и трехфазные.

Решение любой задачи по расчету электрической цепи следует начинать с выбора метода, которым будут произведены вычисления. Как правило, одна и таже задача может быть решена несколькими методами. Результат в любом случае будет одинаковым, а сложность вычислений может существенно отличаться. Для корректного выбора метода расчета следует сначала определится к какому классу относится данная электрическая цепь: к простым электрическим цепям или к сложным.

К простым относят электрические цепи, которые содержат либо один источник электрической энергии, либо несколько находящихся в одной ветви электрической цепи. Ниже изображены две схемы простых электрических цепей. Первая схема содержит один источник напряжения, в таком случае электрическая цепь однозначно относится к простым цепям. Вторая содержит уже два источника, но они находятся в одной ветви, следовательно это также простая электрическая цепь.

Расчет простых электрических цепей обычно производят в такой последовательности:


Описанная методика применима для расчета любых простых электрических цепей, типовые примеры приведены в примере №4 и в примере №5. Иногда расчеты подобным методом могут оказатся довольно объемыми и длительными. Поэтому после нахождения решения будет нелишним провести проверку правильности ручных расчетов с применением специализированных программ или составлением баланса мощностей. Расчет простой электрической цепи в сочетании с составлением баланса мощностей приведен в примере №6.



Сложные электрические цепи

К сложным электрическим цепям относят цепи, содержащие несколько источников электрической энергии, включенных в разные ветви. Ниже на рисунке изображены примеры таких цепей.


Для сложных электрических цепей неприменима методика расчета простых электрических цепей. Упрощение схем невозможно, т.к. нельзя выделить на схеме участок цепи с последовательным или параллельным соединением однотипных элементов. Иногда, преобразование схемы с ее последующим расчетом все-таки возможно, но это скорее исключение из общего правила.

Для полного расчета сложных электрических цепей обычно используют следующее методы:

  1. Применение законов Кирхгофа (универсальный метод, сложные расчеты системы линейных уравнений).
  2. Метод контурных токов (универсальный метод, расчеты немного проще чем в п.1)
  3. Метод узловых напряжений (универсальный метод, расчеты немного проще чем в п.1)
  4. Принцип наложения (универальный метод, несложные расчеты)
  5. Метод эквивалентного источника (удобен когда необходимо произвести не полный расчет электрической цепи, а найти ток в одной из ветвей).
  6. Метод эквивалентного преобразования схемы (применим довольно редко, простые расчеты).

Особенности применения каждого метода расчета сложных электрических цепей более подробно изложены в соответсвующих подразделах.




Top