Петлевая антенна. Активная петлевая антенна. Также понадобятся материалы

Изобретение относится к антенной технике, а именно к приемным активным петлевым антеннам, и может найти применение в радиосвязи, радионавигации, радиопеленгации, телевидении и радиовещании. Технический результат, на достижение которого направлено предлагаемое техническое решение, - расширение функциональных возможностей активной петлевой антенны. Сущность изобретения состоит в том, что наводимые в петлях синфазные и противофазные относительно концов петель токи обрабатываются на высокой частоте для формирования на выходах антенны одновременно круговой диаграммы направленности и диаграммы направленности в форме восьмерки. При этом синфазная составляющая сигнала пропорциональна составляющей вектора электрического поля, а противофазная составляющая - составляющей вектора магнитного поля приходящей электромагнитной волны. Предлагаются два варианта антенны, первый из которых может использоваться как самостоятельная антенна и как составная часть более сложной антенны второго варианта. Первый вариант антенны содержит в своем составе одну проводящую петлю и электрический противовес петли, второй - пять идентичных петель и один противовес. Второй вариант антенны позволяет определять одновременно и независимо три составляющие вектора электрического поля и три составляющие вектора магнитного поля приходящей электромагнитной волны. 2 з. п. ф-лы, 2 ил.

Изобретение относится к антенной технике, а именно к приемным активным петлевым антеннам, и может найти применение в радиосвязи, радионавигации, радиопеленгации, телевидении и радиовещании. Известна широкополосная активная петлевая антенна , содержащая две идентичные проводниковые петли, расположенные в одной плоскости и ориентированные концами навстречу друг другу, электрические нагрузки, согласующий трансформатор и широкополосный усилитель. Концы повышающей обмотки трансформатора соединены с нижними концами петель, концы понижающей обмотки - с верхними концами петель и с входом усилителя, выход которого образует выход антенны. Электрические нагрузки указанных петель могут быть распределенными омическими или сосредоточенными индуктивно-емкостными. Антенна работает в полосе частот с коэффициентом перекрытия 4:1. Широкополосный усилитель имеет коэффициент усиления 25 дБ. Одним из недостатков данной антенны является низкая помехозащищенность, обусловленная ее круговой диаграммой направленности. Другой ее недостаток заключается в использовании согласующего трансформатора, связь между обмотками которого осуществляется через магнитопровод. Такие трансформаторы обладают значительными потерями на высоких частотах. Наиболее близкой к заявляемому устройству по наибольшему числу существенных признаков является петлевая антенна , содержащая две идентичные проводниковые петли, расположенные в одной плоскости и ориентированные своими концами навстречу друг другу, с периметром каждой петли, не превышающим четверти минимальной рабочей длины волны, два суммирующих устройства, два конденсатора, два резистора, входной согласующий трансформатор и усилитель. Входы первого и второго суммирующих устройств соединены с концами первой и второй петель соответственно. Первый и второй резисторы соединены последовательно и подключены к верхним концам петель. Первый и второй конденсаторы соединены последовательно и подключены к выходам первого и второго суммирующих устройств. Концы первичной обмотки согласующего трансформатора соединены с нижними концами первой и второй петель. Средняя точка первичной обмотки согласующего трансформатора соединена с местом соединения резисторов между собой и с местом соединения конденсаторов между собой. Выходная обмотка согласующего трансформатора подключена к входу усилителя. Выход усилителя является выходом антенны. При оптимальном соотношении противофазного и синфазного токов, наводимых в петлях падающей электромагнитной волной, обеспечивается кардиоидная диаграмма направленности. Необходимое соотношение токов обеспечивается выбором определенных геометрических размеров петель и величин сопротивлений резисторов и емкостей конденсаторов. Одним из недостатков прототипа является низкая чувствительность в низкочастотной части рабочего диапазона, обусловленная использованием резисторов для формирования кардиоидной диаграммы направленности. Другим недостатком прототипа является использование входного трансформатора с обмотками, связь между которыми осуществляется через магнитопровод. Это снижает чувствительность антенны на верхних частотах. Антенна принимает электромагнитную волну одной поляризации и имеет один выход, что ограничивает ее функциональные возможности. Заявляемое техническое решение направлено на расширение функциональных возможностей активной петлевой антенны (возможность иметь от двух до шести независимых выходов с различными диаграммами направленности и возможность определять одновременно три составляющие вектора электрического поля и три составляющие вектора магнитного поля падающей электромагнитной волны). Это достигается тем, что в активную петлевую антенну, содержащую проводниковую петлю с периметром, не превышающим четверти минимальной рабочей длины волны, суммирующее устройство, соединенное своими входами с концами петли, и усилитель, выход которого образует выход антенны, дополнительно введены электрический противовес петли, оканчивающийся выводом, первое и второе вычитающие устройства и второй усилитель, вход которого соединен с выходом первого вычитающего устройства, а выход усилителя образует второй выход антенны, вывод противовеса лежит в плоскости петли на прямой, проходящей между концами петель через ее центр, и ориентирован навстречу концам петли, входы первого вычитающего устройства соединены с концами петли, входы второго вычитающего устройства соединены с выходом суммирующего устройства и выводом противовеса, а его выход - с входом первого усилителя, при этом середина отрезка прямой линии, расположенного между концами петли и выводом противовеса, образует фазовый центр петли и противовеса, а концы петли и вывод противовеса удалены от названного фазового центра на расстояние, не превышающее 0,02 минимальной рабочей длины волны. Это достигается также тем, что кроме вышеназванных электрического противовеса, первого и второго вычитающих устройств и второго усилителя, в состав антенны введены две пары проводниковых петель, образованные второй и третьей, четвертой и пятой петлями, каждая из которых идентична первой петле, второе-седьмое суммирующие устройства, третье-восьмое вычитающие устройства и третий-шестой усилители, выходы которых образуют третий-шестой выходы антенны, вторая и третья петли расположены в одной плоскости и ориентированы своими концами навстречу друг другу, четвертая и пятая петли расположены в другой плоскости и также ориентированы своими концами навстречу друг другу, плоскости, в которых расположены пары петель, и плоскость, в которой расположена первая петля, и линии, проходящие через центры петель каждой пары, и линия, соединяющая центр первой петли и вывод противовеса, взаимно ортогональны, второе и третье, пятое и шестое суммирующие устройства соединены своими входами с концами второй и третьей, четвертой и пятой петель, а своими выходами - с входами пятого и восьмого вычитающих устройств, выходы которых подключены к входам третьего и пятого усилителей, третье и четвертое, шестое и седьмое вычитающие устройства соединены своими входами с концами второй и третьей, четвертой и пятой петель, а своими выходами - с входами четвертого и седьмого суммирующих устройств, выходы которых подключены к входам четвертого и шестого усилителей, при этом середины отрезков прямых, соединяющих центры петель в каждой паре, образуют фазовые центры пар, концы петель в каждой паре удалены от фазового центра пары на расстояние, не превышающее 0,02 минимальной рабочей длины волны, а фазовые центры первой и второй пар петель и фазовый центр первой петли и противовеса удалены друг от друга на расстояние, не превышающее 0,05 минимальной длины волны. В частном случае противовес выполняется в виде отрезка проводящей цилиндрической трубы. На фиг. 1 и 2 приведены функциональные схемы двух вариантов заявляемой активной петлевой антенны. На фиг. 1 обозначено: 1 - проводниковая петля; 2 - электрический противовес петли; 3 - суммирующее устройство (устройство, суммирующее синфазные колебания и обладающее высоким входным сопротивлением для противофазных колебаний); 4 и 5 - первое и второе разностные устройства (устройства, суммирующие противофазные колебания и обладающие высоким входным сопротивлением для синфазных колебаний); 6 и 7 - первый и второй усилители. На фиг. 2 обозначено: 8, 9, 10 и 11 - вторая, третья, четвертая и пятая петли; 12-17 - второе-седьмое суммирующие устройства; 18-23 - третье-восьмое вычитающие устройства; 24-27 - третий-шестой усилители. Обозначения первой петли, противовеса, первого суммирующего, первого и второго разностных устройств и первого и второго усилителей соответствуют обозначениям, приведенным на фиг.1. В качестве противовеса 2 первой петли 1 в обоих вариантах активной петлевой антенны (фиг.1 и 2) в данном частном случае используется отрезок проводящей цилиндрической трубы. В варианте, изображенном на фиг.2, общая ось первой петли 1 и противовеса 2 расположена в вертикальной плоскости на оси Z, а общие оси пар петель 8 и 9 и 10 и 11 расположены в горизонтальной плоскости на осях Х и Y. Плоскости первой петли и обеих пар петель, так же как и оси X, Y и Z, взаимно ортогональны. Активная петлевая антенна, функциональная схема которой изображена на фиг.1, работает следующим образом. Антенна принимает сигналы линейной поляризации, у которых вектор поляризации электромагнитного поля параллелен общей оси петли и противовеса. Электромагнитное поле наводит в петле 1 противофазный и синфазный токи относительно начала и конца петли. Противофазный ток соответствует магнитной составляющей и электромагнитного поля, а синфазный ток - электрической составляющей. Выделение синфазного тока осуществляет суммирующее устройство 3. Выделение противофазного тока осуществляет вычитающее устройство 4. В противовесе 2 под действием электромагнитного поля наводится ЭДС и через его вывод протекает ток, противофазный синфазным токам, протекающим через концы петли. Токи с выхода суммирующего устройства 3 и конца противовеса 2 поступают на входы второго вычитающего устройства 5, с выхода которого сигнал поступает на вход первого усилителя 6. С выхода первого разностного устройства 4 сигнал поступает на вход второго усилителя 7. Выходы усилителей 6 и 7 образуют первый и второй выходы антенны. По синфазному сигналу активная петлевая антенна эквивалентна несимметричному электрическому вибратору и имеет аналогичную диаграмму направленности. По противофазному сигналу антенна имеет направленные характеристики, близкие к характеристикам одиночной петли. Активная петлевая антенна, функциональная схема которой приведена на фиг. 2, представляет собой устройство, состоящее из трех независимых и невзаимодействующих между собой антенн, первой из которых является вышеописанная антенна (фиг.1). Каждая из двух других антенн содержит пару петель (8 и 9 или 10 и 11), суммирующие и вычитающие устройства, а также усилители. Поскольку эти две другие антенны идентичны, ограничимся описанием второй антенны, содержащей петли 8 и 9. Вторая антенна, так же как и первая, принимает линейно поляризованное электромагнитное поле, при этом вектор поляризации электромагнитного поля параллелен общей оси пары петель. Электромагнитное поле наводит в каждой петле ЭДС, под действием которых через концы петель протекают противофазные и синфазные токи. Противофазные токи соответствуют магнитной составляющей электромагнитного поля, синфазные токи - электрической составляющей. К концам петель 8 и 9 подключены второе 12 и третье 13 суммирующие устройства и третье 18 и четвертое 19 вычитающие устройства. Суммирующие устройства выделяют синфазные токи с концов каждой петли, вычитающие устройства - противофазные токи. Противофазные сигналы с выходов суммирующих устройств 12 и 13 поступают на входы пятого вычитающего устройства 20, где они суммируются в противофазе и поступают на вход третьего усилителя 24. Синфазные сигналы с выходов третьего 18 и четвертого 19 вычитающих устройств поступают на входы четвертого суммирующего устройства 14, с выхода которого они поступают на вход четвертого усилителя 25. Выходы третьего 24 и четвертого 25 усилителей образуют третий и четвертый выходы антенны. По синфазным сигналам, снимаемым с концов петель 8 и 9, вторая антенна эквивалентна симметричному электрическому вибратору и имеет аналогичную диаграмму направленности. По противофазным сигналам, снимаемым с тех же концов, вторая антенна имеет направленные характеристики, близкие к характеристикам одиночной петли. Третья антенна, образованная парой петель 10 и 11, суммирующими (15, 16, 17) и вычитающими (21, 22, 23) устройствами и усилителями (26, 27), работает так же, как и вторая антенна. Устройство, функциональная схема которого изображена на фиг.2, позволяет в месте приема определять одновременно три составляющие вектора электрического поля и три составляющие вектора магнитного поля. Суммирующие устройства для активной петлевой антенны нами были выполнены на основе одинаковых отрезков двухпроводной линии передачи и одинаковых ферритовых магнитопроводов . Отрезок линии передачи длиной не более 0,15 минимальной рабочей длины волны и волновым сопротивлением 75 Ом размещался на ферритовом магнитопроводе. Начало первого проводника линии и конец второго проводника образовывали входы суммирующего устройства, а соединенные вместе конец первого проводника и начало второго образовывали выход устройства. Вычитающие устройства для активной петлевой антенны были выполнены на основе тех же магнитопроводов и идентичных отрезков линии передачи. Начало первого проводника линии и начало второго проводника образовывали входы вычитающего устройства, а концы первого и второго проводников образовывали его выходы. Такие устройства обладают небольшими потерями и относительно широкой полосой рабочих частот. Для обеспечения качественного приема радиосигналов усилители для активной петлевой антенны были выполнены по балансной схеме на СВЧ биполярных транзисторах средней мощности КТ939А и имели коэффициент усиления 15-20 дБ. Динамический диапазон усилителей по интермодуляционным искажениям второго и третьего порядков составлял не менее 85 дБ. Работоспособность и преимущества предлагаемой активной петлевой антенны по сравнению с антенной-прототипом были подтверждены испытаниями макетов двух вышеописанных вариантов антенны: активной петлевой антенны с противовесом и активной петлевой антенны для измерения всех шести компонент электромагнитного поля. Макеты вариантов активной петлевой антенны имели следующие характеристики: Диапазон рабочих частот, МГц - 3-30 Выходное сопротивление, Ом - 75 Чувствительность в полосе 3 кГц, мкВ/м на частотах: 3 Мгц - 0,5 30 МГц - 0,1 Развязка по поляризации между выходами второго варианта активной петлевой антенны не менее, дБ - 30 Динамический диапазон по взаимной модуляции второго и третьего порядков не менее, дБ - 85 Напряжение питания, В - 12 Габариты первого варианта активной петлевой антенны, м - 0,85х1,7х0,2 Габариты второго варианта активной петлевой антенны, м - 1,7х1,7х1,7
Предлагаемые варианты активной петлевой антенны в отличие от известных приемных малогабаритных активных антенн реагируют как на магнитную, так и на электрическую составляющие электромагнитного поля и имеют несколько выходов с различными диаграммами направленности. Второй вариант антенны позволяет определить в одной точке пространства одновременно три составляющие вектора электрического поля и три составляющие вектора магнитного поля приходящей электромагнитной волны. Чувствительность предлагаемых вариантов антенны выше чувствительности антенны-прототипа, поскольку в предлагаемых устройствах отсутствуют соединенные с концами петель омические нагрузки. Источники информации
1. Патент США N3631499, МКИ Н 01 Q 11/12. Electrically small double-loop antenna with distributed loading and impedance matching. Приор. 28.12.71. 2. А. с. СССР N 1483515, МКИ Н 01 Q 23/00. Активная рамочная антенна. Опубл. 30.05.89. Бюл. N20 - прототип. 3. Устройства сложения и распределения мощностей высокочастотных колебаний/ В.В. Заенцев, В.М. Катушкина, С.Е. Модель. Под ред. З.И. Моделя. - М. : Сов. Радио, 1980. - 296 с.

Формула изобретения

1. Активная петлевая антенна, содержащая первую проводниковую петлю с периметром, не превышающим четверти минимальной рабочей длины волны, первое суммирующее устройство, соединенное своими входами с концами первой петли, и первый усилитель, выход которого образует первый выход антенны, отличающаяся тем, что в ее состав дополнительно введены электрический противовес первой петли, оканчивающийся выводом, первое и второе вычитающие устройства и второй усилитель, вход которого соединен с выходом первого вычитающего устройства, а его выход образует второй выход антенны, вывод противовеса лежит в плоскости первой петли на прямой, проходящей между концами первой петли через ее центр, и ориентирован навстречу концам первой петли, входы первого вычитающего устройства соединены с концами первой петли, входы второго вычитающего устройства соединены с выходом первого суммирующего устройства и выводом противовеса, а его выход - с входом первого усилителя, при этом середина отрезка прямой линии, расположенного между концами первой петли и выводом противовеса, образует фазовый центр петли и противовеса, а концы петли и вывод противовеса удалены от названного фазового центра на расстояние, не превышающее 0,02 минимальной рабочей длины волны.2. Антенна по п.1, отличающаяся тем, что в ее состав дополнительно введены две пары проводниковых петель, образованные второй и третьей, четвертой и пятой петлями, каждая из которых идентична первой петле, второе-седьмое суммирующие устройства, третье-восьмое вычитающие устройства и третий-шестой усилители, выходы которых образуют третий-шестой выходы антенны, вторая и третья петли расположены в одной плоскости и ориентированы своими концами навстречу друг другу, четвертая и пятая петли расположены в другой плоскости и также ориентированы своими концами навстречу друг другу, плоскости, в которых расположены пары петель, и плоскость, в которой расположена первая петля, взаимно ортогональны, линии, проходящие через центры петель каждой пары, и линия, соединяющая центр первой петли и вывод противовеса, взаимно ортогональны, второе и третье, пятое и шестое суммирующие устройства соединены своими входами с концами второй и третьей, четвертой и пятой петель, а своими выходами - с входами пятого и восьмого вычитающих устройств, выходы которых подключены к входам третьего и пятого усилителей, третье и четвертое, шестое и седьмое вычитающие устройства соединены своими входами с концами второй и третьей, четвертой и пятой петель, а своими выходами - с входами четвертого и седьмого суммирующих устройств, выходы которых подключены к входам четвертого и шестого усилителей, при этом середины отрезков прямых, соединяющих центры петель в каждой паре, образуют фазовые центры пар, концы петель в каждой паре удалены от фазового центра пары на расстояние, не превышающее 0,02 минимальной рабочей длины волны, а фазовые центры первой и второй пар петель и фазовый центр первой петли и противовеса удалены друг от друга на расстояние, не превышающее 0,05 минимальной рабочей длины волны.3. Антенна по п.1 или 2, отличающаяся тем, что противовес выполнен в виде отрезка проводящей цилиндрической трубы.

Даже представить себе невозможно, сколько антенн становится вокруг нас: мобильный телефон, телевизор, компьютер, беспроводной роутер, радиоприемники. Есть даже антенные устройства для экстрасенсов. Что такое антенна кв? Большинство людей, не связанных с радио, ответит, что это длинный провод или телескопический штырь. Чем он длиннее, тем лучше приём радиоволн. Доля истины в этом есть, но ее очень мало. Так каких же размеров должна быть антенна?

Важно! Размеры всех антенн должны быть соизмеримы с длиной радиоволны. Минимальная резонансная длина антенны равна половине длины волны.

Слово резонанс означает, что такая антенна может эффективно работать только в узкой полосе частот. Большинство антенн именно резонансные. Существуют и широкополосные антенны: за широкую полосу приходится расплачиваться эффективностью, а именно коэффициентом усиления.

Почему же работает стереотип, что чем длиннее кв антенны, тем они эффективнее? На самом деле это так, но до определённых пределов, так как это характерно только для средних и длинных волн. А с увеличением частоты размеры антенн можно уменьшить. На коротких волнах (это длины примерно от 160 до10 м) размеры антенн уже могут быть оптимизированы для эффективной работы.

Диполи

Самые простые и эффективные антенны – это полуволновые вибраторы, их ещё называют диполями. Запитываются они в центре: в разрыв диполей подаётся сигнал от генератора. Радиолюбительские портативные антенны могут работать как передающие, так и как приёмные. Правда, передающие антенны отличаются толстым кабелем, большими изоляторами – эти особенности позволяют им выдерживать мощность передатчиков.

Самое опасное место у диполя – это его концы, где создаются пучности напряжения. Максимум тока у диполя получается посередине. Но это не страшно, потому что пучности тока заземляют, тем самым, защищая приемники и передатчики от грозовых разрядов и статического электричества.

Обратите внимание! При работе с мощными радиопередатчиками можно получить удар от высокочастотных токов. Но ощущения будут не такими, как от удара от розетки. Удар будет ощущаться как ожог, без тряски в мышцах. Это получается из-за того, что высокочастотный ток течёт по поверхности кожи и вглубь тела не проникает. То есть от антенны можно подгореть снаружи, но внутри остаться нетронутым.

Многодиапазонная антенна

Довольно часто необходимо установитъ более одной антенны, но это не удается. И ведь помимо радиоантенны на один диапазон нужны антенны и на другие диапазоны. Решение задачи – использовать многодиапазонную антенну кв диапазона.

Обладая довольно приличными характеристиками, многодиапазонные вертикальные антенны могут решить антенную проблему для многих коротковолновиков. Они становятся очень популярными по ряду причин: нехватка пространства в стеснённых городских условиях, рост числа любительских радиодиапазонов, так называемая жизнь «на птичьих правах» при съёме квартиры.

Многодиапазонные вертикальные антенны не требуют много места для своей установки. Портативные конструкции можно расположить на балконе либо выйти с этой антенной куда-нибудь в близлежащий парк и поработать там в полевых условиях. Самые простые КВ антенны представляют собой одиночный провод с несимметричной запиткой.

Кто-то скажет укороченная антенна – это не то. Волна любит свой размер, поэтому кв антенна должна быть большой и эффективной. С этим можно согласиться, но чаще всего нет возможности для приобретения такого устройства.

Изучив интернет и посмотрев конструкции готовых изделий от разных фирм, приходишь к выводу: их очень много, и они очень дорогие. А всего в этих конструкциях провод для кв антенн и полтора метра штырька. Поэтому будет интересен, особенно начинающему, быстрый, простой и дешевый вариант самодельного изготовления эффективных кв антенн.

Вертикальная антенна (Ground Plane)

Ground Plane – это вертикальная антенна для радиолюбителей с длинным штырем, равным четверти длины волны. Но почему четверти, а не половине? Здесь недостающая половина диполя – это зеркальное отражение вертикального штыря от поверхности земли.

Но так как земля очень плохо проводит электричество, то в качестве нее используют либо листы металла, либо просто несколько проводов, раскинутых ромашкой. Их длину тоже выбирают равной четверти длины волны. Это и есть антенна Ground Plane, в переводе значит земляная площадка.

Большинство автомобильных антенн для радиоприёмников сделано по такому же принципу. Длина волны радиовещательной УКВ диапазона – это около трёх метров. Соответственно четверть полуволны будет 75 см. Второй луч диполя отражается в корпусе автомобиля. То есть такие конструкции должны принципиально монтироваться на металлической поверхности.

Коэффициент усиления антенны – отношение напряженности поля, получаемого от антенны, к напряженности поля в той же точке, но полученного от эталонного излучателя. Это отношение выражается в децибелах.

Рамочная магнитно-петлевая антенна

В тех случаях, когда простейшая антенна не может справиться с задачей, может использоваться вертикальная магнитно-петлевая антенна. Её можно сделать из дюралевого обруча. Если в горизонтальных рамочных антеннах на их технические показатели не оказывает влияние геометрическая форма и способ запитки, то на вертикальные антенны это оказывает влияние.

Такая антенна функционирует на трёх диапазонах: десять, двенадцать и пятнадцать метров. Перестраивается с помощью конденсатора, который должен быть надежно защищен от атмосферной влаги. Питание осуществляется любым кабелем 50-75 Ом, потому как согласующее устройство обеспечивает трансформацию выходного сопротивления передатчика в сопротивление антенны.

Укороченная дипольная антенна

Существуют укороченные антенны на 7 МГц, длина плеч которых составляет всего около трёх метров. Конструктив антенны включает в себя:

  • два плеча порядка трех метров;
  • изоляторы на краях;
  • веревочки для оттяжек;
  • катушка удлинительная;
  • небольшой шнур;
  • центральный узел.

Длина намотки катушки составляет 85 миллиметров и 140 намотанных вплотную витков. Точность здесь не так важна. То есть если витков будет больше, то это можно компенсировать длиной плеча антенны. Можно укорачивать и длину намотки, но это более сложно, придётся распаивать концы крепления.

Длина от края намотки катушки до центрального узла составляет порядка 40 сантиметров. В любом случае после изготовления антенну придётся настраивать подбором длины.

Вертикальная кв антенна своими руками

Как смастерить самому? Взять ненужную (или купить) недорогую удочку из карбона, 20-40-80. Наклеить на нее с одной стороны бумажную полоску с разметками точек. В отмеченные места вставить клипсы для подключения перемычек и шунтирования ненужной катушки. Таким образом, антенна будет переключаться с диапазона на диапазон. В заштрихованных областях будут намотаны укорачивающая катушка и указанное количество витков. В саму «удочку» вставляется штырь.

Также понадобятся материалы:

  • медный обмоточный провод используется диаметром 0,75 мм;
  • провод для противовеса диаметром 1,5 мм.

Штыревая антенна обязательно должна работать с противовесом, иначе она не будет эффективной. Итак, при наличии всех этих материалов останется только намотать проволочный бандаж на удилище так, чтобы получилась сначала большая катушка, затем меньше и ещё меньше. Процесс переключения диапазонов антенны: от 80 м до 2 м.

Выбор первого кв трансивера

При выборе коротковолнового трансивера начинающего радиолюбителя в первую очередь надо уделить внимание тому, как его купить, чтобы не ошибиться. Какие тут есть особенности? Существуют необычные узкоспециализированные радиостанции – это не подходит для первого трансивера. Не нужно выбирать носимые радиостанции, предназначенные для работы на ходу со штыревой антенной.

Такая радиостанция не удобна для того, чтобы:

  • ее использовать в качестве радиолюбительского обычного аппарата,
  • начать проводить связь;
  • научиться ориентироваться в радиолюбительском коротковолновом эфире.

Также есть радиостанции, которые программируются исключительно с компьютера.

Простейшие самодельные антенны

Для радиосвязи в полях бывает нужно связаться не только на расстояния в сотни километров, но и на небольшие расстояния с маленьких носимых радиостанций. Не всегда возможна устойчивая связь даже на небольшие расстояния, так как рельеф местности и крупные постройки могут мешать распространению сигнала. В таких случаях может помочь подъём антенны на небольшую высоту.

Высота даже такая, как 5-6 метров, может дать значительную прибавку в сигнале. И если с земли была слышимость очень плохая, то при подъёме антенны на несколько метров ситуация может значительно улучшиться. Конечно, установкой десятиметровой мачты и многоэлементной антенны однозначно улучшится и дальняя связь. Но мачты и антенны есть не всегда. В таких случаях выручают самодельные антенны, поднятые на высоту, например, на ветку дерева.

Немного слов о коротковолновиках

Коротковолновиками являются специалисты, обладающие знаниями в области электротехники, радиотехники, радиосвязи. К тому же они владеют квалификацией радиста, способны вести радиосвязь даже в таких условиях, в которых не всегда соглашаются работать профессионалы-радисты, а в случае необходимости способные быстро найти и устранить неисправность в своей радиостанции.

В основе работы коротковолновиков лежит коротковолновое любительство – установление двусторонней радиосвязи на коротких волнах. Самыми юными представителями коротковолновиков являются школьники.

Антенны мобильных телефонов

Ещё десяток лет тому назад из мобильных телефонов торчали небольшие пипочки. Сегодня ничего такого не наблюдается. Почему? Так как базовых станций в то время было мало, то повысить дальность связи можно было, только увеличив эффективность антенн. В общем, наличие полноразмерной антенны мобильного телефона в те времена повышало дальность его работы.

Сегодня, когда базовые станции натыканы через каждые сто метров, такой необходимости нет. К тому же с ростом поколений мобильной связи есть тенденция увеличения частоты. Вч диапазоны мобильной связи расширились до 2500 МГц. Это уже длина волны всего 12 см. И в корпус антенны можно вставить не укороченную антенну, а многоэлементную.

Без антенн в современной жизни не обойтись. Их разнообразие такое огромное, что о них можно рассказывать очень долго. Например, существуют рупорные, параболические, логопериодические, направленные антенны.

Видео

Когда-то хорошая телевизионная антенна была дефицитом, покупные качеством и долговечностью, мягко говоря, не отличались. Сделать антенну для «ящика» или «гроба» (старого лампового телевизора) своими руками считалось показателем мастерства. Интерес к самодельным антеннам не угасает и в наши дни. Ничего странного тут нет: условия приема ТВ кардинально изменились, а производители, полагая, что в теории антенн ничего существенно нового нет и не будет, чаще всего приспосабливают к давно известным конструкциям электронику, не задумываясь над тем, что главное для любой антенны – ее взаимодействие с сигналом в эфире.

Что изменилось в эфире?

Во-первых, почти весь объем ТВ-вещания в настоящее время осуществляется в диапазоне ДМВ . Прежде всего из экономических соображений, в нем намного упрощается и удешевляется антенно-фидерное хозяйство передающих станций, и, что еще более важно – потребность в его регулярном обслуживании высококвалифицированными специалистами, занятыми тяжелым, вредным и опасным трудом.

Второе – ТВ-передатчики теперь покрывают своим сигналом практически все более-менее населенные места , а развитая сеть связи обеспечивает подачу программ в самые глухие углы. Там вещание в обитаемой зоне обеспечивают маломощные необслуживаемые передатчики.

Третье, изменились условия распространения радиоволн в городах . На ДМВ промышленные помехи просачиваются слабо, но железобетонные многоэтажки для них – хорошие зеркала, многократно переотражающие сигнал вплоть до его полного затухания в зоне, казалось бы, уверенного приема.

Четвертое – ТВ-программ в эфире сейчас очень много, десятки и сотни . Насколько это множество разнообразно и содержательно – другой вопрос, но рассчитывать на прием 1-2-3 каналов ныне бессмысленно.

Наконец, получило развитие цифровое вещание . СигналDVB T2 – штука особенная. Там, где он еще хоть чуть-чуть, на 1,5-2 дБ, превышает шумы, прием отличный, как ни в чем ни бывало. А чуть дальше или в стороне – нет, как отрезало. К помехам «цифра» почти не чувствительна, но при рассогласовании с кабелем или фазовых искажениях в любом месте тракта, от камеры до тюнера, картинка может рассыпаться в квадратики и при сильном чистом сигнале.

Требования к антеннам

В соответствии с новыми условиями приема, изменились и основные требования к ТВ-антеннам:

  • Такие ее параметры, как коэффициент направленного действия (КНД) и коэффициент защитного действия (КЗД) ныне определяющего значения не имеют: современный эфир очень грязный, и по малюсенькому боковому лепестку диаграммы направленности (ДН), хоть какая-то помеха, да пролезет, и бороться с ней нужно уже средствами электроники.
  • Взамен особое значение приобретает собственный коэффициент усиления антенны (КУ). Антенна, хорошо «облавливающая» эфир, а не смотрящая на него сквозь маленькую дырочку, даст запас мощности принятого сигнала, позволяющий электронике очистить его от шумов и помех.
  • Современная телевизионная антенна, за редчайшими исключениями, должна быть диапазонной, т.е. ее электрические параметры должны сохраняться естественным образом, на уровне теории, а не втискиваться в приемлемые рамки путем инженерных ухищрений.
  • ТВ-антенна должна согласовываться в кабелем во всем своем рабочем диапазоне частот без дополнительных устройств согласования и симметрирования (УСС).
  • Амплитудно-частотная характеристика антенны (АЧХ) должна быть возможно более гладкой. Резким выбросам и провалам непременно сопутствуют фазовые искажения.

Последние 3 пункта обусловлены требованиями приема цифровых сигналов. Настроенные, т.е. работающие теоретически на одной частоте, антенны можно «растянуть» по частоте, напр. антенны типа «волновой канал» на ДМВ с приемлемым отношением сигнал/шум захватывают 21-40 каналы. Но их согласование с фидером требует применения УСС, которые либо сильно поглощают сигнал (ферритовые), либо портят фазовую характеристику на краях диапазона (настроенные). И «цифру» такая антенна, отлично работающая на «аналоге», будет принимать плохо.

В связи с этим, из всего великого антенного многообразия, в данной статье будут рассмотрены антенны для телевизора, доступные для самостоятельного изготовления, следующих типов:

  • Частотнонезависимая (всеволновая) – не отличается высокими параметрами, но очень проста и дешева, ее можно сделать буквально за час. За городом, где эфир почище, она вполне сможет принимать цифру или достаточно мощный аналог не небольшом удалении от телецентра.
  • Диапазонная логопериодическая. Ее, образно выражаясь, можно уподобить рыболовецкому тралу, уже при облавливании сортирующему добычу. Она тоже довольно проста, идеально согласуется с фидером во всем своем диапазоне, абсолютно не меняет в нем параметры. Техпараметры – средние, поэтому более подойдет для дачи, а в городе в качестве комнатной.
  • Несколько модификаций зигзагообразной антенны , или Z-антенны. В диапазоне МВ это весьма солидная конструкция, требующая немалого умения и времени. Но на ДМВ она вследствие принципа геометрического подобия (см. далее), настолько упрощается и съеживается, что вполне может быть использована как высокоэффективная комнатная антенна при почти любых условиях приема.

Примечание: Z-антенна, если использовать предыдущую аналогию – частый бредень, сгребающий все, что есть в воде. По мере замусоривания эфира она было вышла из употребления, но с развитием цифрового ТВ вновь оказалась на коне – во всем своем диапазоне она так же отлично согласована и держит параметры, как «логопедка».

Точное согласование и симметрирование почти всех описанных далее антенн достигается благодаря прокладке кабеля через т.наз. точку нулевого потенциала. К ней предъявляются особые требования, о которых подробнее будет сказано далее.

О вибраторных антеннах

В полосе частот одного аналогового канала можно передать до нескольких десятков цифровых. И, как уже сказано, цифра работает при ничтожном отношении сигнал/шум. Поэтому в очень удаленных от телецентра, куда сигнал одного-двух каналов еле добивает, местах, для приема цифрового ТВ может найти применение и старый добрый волновой канал (АВК, антенна волновой канал), из класса вибраторных антенн, так что в конце уделим несколько строк и ей.

О спутниковом приеме

Делать самому спутниковую антенну нет никакого смысла. Головку и тюнер все равно нужно покупать, а за внешней простотой зеркала кроется параболическая поверхность косого падения, которую с нужной точностью может выполнить далеко не всякое промышленное предприятие. Единственное, что под силу самодельщикам - настроить спутниковую антенну, об этом читайте тут.

О параметрах антенн

Точное определение упомянутых выше параметров антенн требует знания высшей математики и электродинамики, но понимать их значение, приступая к изготовлению антенны, нужно. Поэтому дадим несколько грубые, но все же поясняющие смысл определения (см. рис. справа):

К определению параметров антенн

  • КУ – отношение принятой антенной на основной (главный) лепесток ее ДН мощности сигнала, к его же мощности, принятой в том же месте и на той же частоте ненаправленной, с круговой, ДН, антенной.
  • КНД – отношение телесного угла всей сферы к телесному углу раскрыва главного лепестка ДН, в предположении, что его сечение – круг. Если главный лепесток имеет разные размеры в разных плоскостях, сравнивать нужно площадь сферы и площадь сечения ею главного лепестка.
  • КЗД – отношение принятой на главный лепесток мощности сигнала к сумме мощностей помех на той же частоте, принятой всеми побочными (задним и боковыми) лепестками.

Примечания:

  • Если антенна диапазонная, мощности считаются на частоте полезного сигнала.
  • Поскольку совершенно ненаправленных антенн не бывает, за такую принимают полуволновой линейный диполь, ориентированный по направлению электрического вектора поля (по его поляризации). Его КУ считается равным 1. ТВ программы передаются с горизонтальной поляризацией.

Следует помнить, что КУ и КНД не обязательно взаимосвязаны. Есть антенны (напр. «шпионская» – однопроводная антенна бегущей волны, АБВ) с высокой направленностью, но единичным или меньшим усилением. Такие смотрят вдаль как бы сквозь диоптрический прицел. С другой стороны, существуют антенны, напр. Z-антенна, у которых невысокая направленность сочетается со значительным усилением.

О тонкостях изготовления

Все элементы антенн, по которым протекают токи полезного сигнала (конкретно – в описаниях отдельных антенн), должны соединяться между собой пайкой или сваркой. В любом сборном узле на открытом воздухе электрический контакт скоро нарушится, и параметры антенны резко ухудшатся, вплоть до полной ее негодности.

Особенно это касается точек нулевого потенциала. В них, как говорят специалисты, наблюдается узел напряжения и пучность тока, т.е. его наибольшее значение. Ток при нулевом напряжении? Ничего удивительного. Электродинамика ушла от закона Ома на постоянном токе так же далеко, как Т-50 от воздушного змея.

Места с точками нулевого потенциала для цифровых антенн лучше всего выполнять гнутыми из цельного металла. Небольшой «ползучий» ток на сварке при приеме аналога на картинке, скорее всего, не скажется. Но, если принимается цифра на границе шумов, то тюнер из-за «ползучки» может не увидеть сигнала. Который при чистом токе в пучности дал бы стабильный прием.

О пайке кабеля

Оплетка (да и центральная жила нередко) современных коаксиальных кабелей делаются не из меди, а из стойких к коррозии и недорогих сплавов. Паяются они плохо и, если долго греть, можно пережечь кабель. Поэтому паять кабели нужно 40-Вт паяльником, легкоплавким припоем и с флюс-пастой вместо канифоли или спиртоканифоли. Пасты жалеть не нужно, припой сразу же растекается по жилкам оплетки только под слоем кипящего флюса.

Частотнонезависимая антенна с горизонтальной поляризацией

Виды антенн
Всеволновая

Всеволновая (точнее, частотнонезависимая, ЧНА) антенна показана на рис. Она – две треугольных металлических пластинки, две деревянных рейки, да много медных эмалированных проволок. Диаметр проволоки значения не имеет, а расстояние между концами проволок на рейках – 20-30 мм. Зазор между пластинами, к которым припаяны другие концы проволок – 10 мм.

Примечание: вместо двух металлических пластин лучше взять квадрат из одностороннего фольгированного стеклотекстолита в вырезанными по меди треугольниками.

Ширина антенны равна ее высоте, угол раскрыва полотен – 90 градусов. Схема прокладки кабеля показана там же на рис. Точка, отмеченная желтым – точка квази-нулевого потенциала. Припаивать в ней оплетку кабеля к полотну не нужно, достаточно туго подвязать, для согласования хватит емкости между оплеткой и полотном.

ЧНА, растянутая в окне шириной 1,5 м, принимает все метровые и ДЦМ каналы почти со всех направлений, кроме провала около 15 градусов в плоскости полотна. В этом ее преимущество в местах, где возможен прием сигналов от разных телецентров, не нужно вращать. Недостатки – единичный КУ и нулевой КЗД, поэтому в зоне действия помех и вне зоны уверенного приема ЧНА не годится.

Примечание : есть и другие типы ЧНА, напр. в виде двухвитковой логарифимической спирали. Она компактнее ЧНА из треугольных полотен в том же диапазоне частот, поэтому иногда используется в технике. Но в быту это преимуществ не дает, сделать спиральную ЧНА сложнее, с коаксиальным кабелем согласовать труднее, поэтому не рассматриваем.

На основе ЧНА был создан очень популярный когда-то веерный вибратор (рога, рогулька, рогатка), см. рис. Его КНД и КЗД что-то около 1,4 при довольно гладкой АЧХ и линейной ФЧХ, так что для цифры он подошел бы и сейчас. Но – работает только на МВ (1-12 каналы), а цифровое вещание идет на ДМВ. Впрочем, на селе, при подъеме на 10-12 м, может сгодиться для приема аналога. Мачта 2 может быть из любого материала, но крепежные планки 1 – из хорошего ненамокающего диэлектрика: стеклотекстолита или фторопласта толщиной не менее 10 мм.

Веерный вибратор для приема МВ ТВ

Пивная всеволновка

Антенны из пивных банок

Всеволновая антенна из пивных банок явно не плод похмельных галлюцинаций спившегося радиолюбителя. Это действительно очень хорошая антенна на все случаи приема, нужно только сделать ее правильно. Причем исключительно простая.

В основе ее конструкции следующее явление: если увеличивать диаметр плеч обычного линейного вибратора, то рабочая полоса его частот расширяется, а прочие параметры остаются неизменными. В дальней радиосвязи с 20-х годов используется т.наз. диполь Надененко, основанный на этом принципе. А пивные банки по размерам как раз подходят в качестве плеч вибратора на ДМВ. В сущности, ЧНА и есть диполь, плечи которого неограниченно расширяются до бесконечности.

Простейший пивной вибратор из двух банок годится для комнатного приема аналога в городе даже без согласования с кабелем, если его длина не более 2 м, слева на рис. А если собрать из пивных диполей вертикальную синфазную решетку с шагом в полволны (справа на рис.), согласовать ее и отсимметрировать с помощью усилителя от польской антенны (о нем речь еще пойдет), то благодаря сжатию главного лепестка ДН по вертикали такая антенна даст и хороший КУ.

Усиление «пивнухи» можно еще увеличить, добавив заодно КЗД, если сзади нее поместить экран из сетки на расстоянии, равном половине шага решетки. Монтируется пивная решетка на мачте из диэлектрика; механические связи экрана с мачтой – тоже диэлектрические. Остальное ясно из след. рис.

Синфазная решетка из пивных диполей

Примечание: оптимальное количество этажей решетки – 3-4. При 2-х выигрыш в усилении будет небольшим, а большее трудно согласовать с кабелем.

«Логопедка»

Логопериодическая антенна (ЛПА) представляет собой собирающую линию, к которой попеременно подключаются половинки линейных диполей (т.е. куски проводника длиной в четверть рабочей волны), длина и расстояние между которыми меняются в геометрической прогрессии с показателем меньше 1, в центре на рис. Линия может быть как настроенной (с КЗ на противоположном от места подключения кабеля конце), так и свободной. ЛПА на свободной (ненастроенной) линии для приема цифры предпочтительнее: она выходит длиннее, но ее АЧХ и ФЧХ гладкие, а согласование с кабелем не зависит от частоты, поэтому на ней мы и остановимся.

Конструкция логопериодической антенны

ЛПА может быть изготовлена на любой, до 1-2 ГГц, наперед заданный диапазон частот. При изменении рабочей частоты ее активная область из 1-5 диполей смещается вперед-назад по полотну. Поэтому, чем ближе показатель прогрессии к 1, и соответственно меньше угол раскрыва антенны, тем большее усиление она даст, но при этом возрастает ее длина. На ДМВ от наружной ЛПА можно добиться 26 дБ, а от комнатной – 12 дБ.

ЛПА, можно сказать, по совокупности качеств идеальная цифровая антенна , поэтому остановимся на ее расчете несколько подробнее. Основное, что нужно знать, что увеличение показателя прогрессии (тау на рис.) дает прирост усиления, а уменьшение угла раскрыва ЛПА (альфа) увеличивает направленность. Экран для ЛПА не нужен, он на ее параметры почти не влияет.

Расчет цифровой ЛПА имеет особенности:

  • Начинают его, ради запаса по частоте, со второго по длине вибратора.
  • Затем, взяв обратную величину от показателя прогрессии, рассчитывают самый длинный диполь.
  • После самого короткого, исходя из заданного диапазона частот, диполя, добавляют еще один.

Поясним на примере. Допустим, наши цифровые программы лежат в диапазоне 21-31 ТВК, т.е. в 470-558 МГц по частоте; длины волн соответственно – 638-537 мм. Также допустим, что нам нужно принимать слабый зашумленный сигнал вдали от станции, поэтому берем максимальный (0,9) показатель прогрессии и минимальный (30 градусов) угол раскрыва. Для расчета понадобится половина угла раскрыва, т.е. 15 градусов в нашем случае. Раскрыв можно еще уменьшить, но длина антенны непомерно, по котангенсу, возрастет.

Считаем В2 на рис: 638/2 = 319 мм, а плечи диполя будут по 160 мм, до 1 мм можно округлять. Расчет нужно будет вести, пока не получится Bn = 537/2 = 269 мм, и затем просчитать еще один диполь.

Теперь считаем А2 как В2/tg15 = 319/0,26795 = 1190 мм. Затем, через показатель прогрессии, А1 и В1: А1 = А2/0,9 = 1322 мм; В1 = 319/0,9 = 354,5 = 355 мм. Далее последовательно, начиная с В2 и А2, умножаем на показатель, пока не дойдем до 269 мм:

  • В3 = В2*0,9 = 287 мм; А3 = А2*0,9 = 1071 мм.
  • В4 = 258 мм; А4 = 964 мм.

Стоп, у нас уже меньше 269 мм. Проверяем, уложимся ли по усилению, хотя и так ясно, что нет: чтобы получить 12 дБ и более, расстояния между диполями не должны превышать 0,1-0,12 длины волны. В данном случае имеем для В1 А1-А2 = 1322 – 1190 = 132 мм, а это 132/638 = 0,21 длины волны В1. Нужно «подтянуть» показатель к 1, до 0,93-0,97, вот и пробуем разные, пока первая разница А1-А2 не сократится вдвое и более. Для максимума в 26 дБ нужно расстояние между диполями в 0,03-0,05 длины волны, но не менее 2-х диаметров диполя, 3-10 мм на ДМВ.

Примечание: остаток линии за самым коротким диполем, обрезаем, он нужен только для расчета. Поэтому реальная длина готовой антенны получится всего около 400 мм. Если наша ЛПА наружная, это очень хорошо: можно уменьшить раскрыв, получив большую направленность и защиту от помех.

Видео: антенна для цифрового ТВ DVB T2

О линии и мачте

Диаметр трубок линии ЛПА на ДМВ – 8-15 мм; расстояние между их осями – 3-4 диаметра. Учтем еще, что тонкие кабели-«шнурки» дают на ДМВ такое затухание на метр, что все антенно-усилительные ухищрения сойдут на нет. Коаксиал для наружной антенны нужно брать хороший, диаметром по оболочке от 6-8 мм. Т.е., трубки для линии должны быть тонкостенными цельнотянутыми. Подвязывать кабель к линии снаружи нельзя, качество ЛПА резко упадет.

Крепить наружную ЛПА к мачте нужно, разумеется, за центр тяжести, иначе малая парусность ЛПА превратится в огромную и трясущуюся. Но соединять металлическую мачту прямо с линией тоже нельзя: нужно предусмотреть диэлектрическую вставку не менее 1,5 м длиной. Качество диэлектрика большой роли тут не играет, пойдет проолифленное и покрашенное дерево.

Об антенне «Дельта»

Если ДМВ ЛПА согласуется с кабелем усилителем (см. далее, о польских антеннах), то к линии можно пристроить плечи метрового диполя, линейные или веерные, как у «рогатки». Тогда получим универсальную МВ-ДМВ антенну отличного качества. Такое решение использовано в популярной антенне «Дельта», см. рис.

Антенна «Дельта»

Зигзаг в эфире

Z-антенна с рефлектором дает усиление и КЗД такие же, как ЛПА, но главный лепесток ее ДН более чем вдвое шире по горизонтали. Это может быть важно на селе, когда есть прием ТВ с разных направлений. А дециметровая Z-антенна имеет небольшие в плане размеры, что существенно для комнатного приема. Но ее рабочий диапазон теоретически не безграничен, перекрытие по частоте при сохранении приемлемых для цифры параметров – до 2,7.

Z-антенна МВ

Конструкция Z-антенны МВ показана на рис; красным выделен путь прокладки кабеля. Там же слева внизу – более компактный кольцевой вариант, в просторечии – «паук». По нему хорошо видно, что Z-антенна родилась как комбинация ЧНА с диапазонным вибратором; есть в ней кое-что и от ромбической антенны, которая в тему не вписывается. Да, кольцо «паука» не обязательно должно быть деревянным, это может быть обруч из металла. «Паук» принимает 1-12 МВ каналы; ДН без рефлектора – почти круговая.

Классический же зигзаг работает или на 1-5, или на 6-12 каналах, но для его изготовления нужны только деревянные рейки, медный эмалированный провод c d = 0,6-1,2 мм да несколько обрезков фольгированного стеклотекстолита, поэтому даем размеры, через дробь для 1-5/6-12 каналов: А = 3400/950 мм, Б, С = 1700/450 мм, b = 100/28 мм, В = 300/100 мм. В точке Е – нулевой потенциал, здесь нужно оплетку спаять с металлизированной опорной пластиной. Размеры рефлектора, тоже 1-5/6-12: А = 620/175 мм, Б = 300/130 мм, Г = 3200/900 мм.

Диапазонная Z-антенна с рефлектором дает усиление в 12 дБ, настроенная на один канал – 26 дБ. Чтобы на основе диапазонного зигзага построить одноканальный, нужно взять сторону квадрата полотна по середине ее ширины в четверть длины волны и пересчитать пропорционально все прочие размеры.

Народный зигзаг

Как видим, Z-антенна МВ – довольно сложное сооружение. Но ее принцип показывает себя во всем блеске на ДМВ. Z-антенну ДМВ с емкостными вставками, сочетающая в себе достоинства «классики» и «паука», сделать настолько просто, что она еще в СССР заслужила звание народной, см. рис.

Народная ДМВ антенна

Материал – медная трубка или алюминиевый лист толщиной от 6 мм. Боковые квадратики цельные из металла или затянутые сеткой, или закрытые жестянкой. В двух последних случаях их нужно пропаять по контуру. Коаксиал резко гнуть нельзя, поэтому ведем его так, чтобы он дошел до бокового угла, а затем не выходил за пределы емкостной вставки (бокового квадратика). В т. А (точка нулевого потенциала) оплетку кабеля электрически соединяем с полотном.

Примечание: алюминий не паяется обычными припоями и флюсами, поэтому алюминиевая «народная» годится для наружной установки только после герметизации электрических соединений силиконом, в ней ведь все на винтах.

Видео: пример двойной треугольной антенны

Волновой канал

Антенна волновой канал

Антенна волновой канал (АВК), или антенна Удо-Яги из доступных для самостоятельного изготовления способна дать наибольшие КУ, КНД и КЗД. Но принимать цифру на ДМВ она может только на 1 или 2-3 соседних каналах, т.к. относится к классу остро настроенных антенн. Ее параметры за пределами частоты настройки резко ухудшаются. АВК рекомендуется применять с очень плохих условиях приема, причем для каждого ТВК делать отдельную. К счастью, это не очень сложно – АВК проста и дешева.

В основе работы АВК – «сгребание» электромагнитного поля (ЭМП) сигнала к активному вибратору. Внешне небольшая, легкая, с минимальной парусностью, АВК может иметь эффективную апертуру в десятки длин волн рабочей частоты. Укороченные и поэтому имеющие емкостный импеданс (полное сопротивление) директоры (направители) направляют ЭМП к активному вибратору, а рефлектор (отражатель), удлиненный, с индуктивным импедансом, отбрасывает к нему то, что проскочило мимо. Рефлектор в АВК нужен всего 1, но директоров может быть от 1 до 20 и более. Чем их больше, тем выше усиление АВК, но уже полоса ее частот.

От взаимодействия с рефлектором и директорами волновое сопротивление активного (с которого снимается сигнал) вибратора падает тем больше, чем ближе к максимуму усиления настроена антенна, и согласование с кабелем теряется. Поэтому активный диполь АВК делают петлевым, его исходное волновое сопротивление не 73 Ом, как у линейного, а 300 Ом. Ценой его снижения до 75 Ом АВК с тремя директорами (пятиэлементную, см. рис. справа) удается настроить почти что на максимум усиления в 26 дБ. Характерная для АВК ДН в горизонтальной плоскости приведена на рис. в начале статьи.

Элементы АВК соединяются со стрелой в точках нулевого потенциала, поэтому мачта и стрела могут быть любыми. Очень хорошо подходят пропиленовые трубы.

Расчет и настройка АВК под аналог и цифру несколько различны. Под аналог волновой канал нужно рассчитывать на несущую частоту изображения Fи, а под цифру – на середину спектра ТВК Fс. Почему так – здесь объяснять, к сожалению, нет места. Для 21-го ТВК Fи = 471,25 МГц; Fс = 474 МГц. ДМВ ТВК расположены вплотную друг к другу через 8 МГц, поэтому их настроечные частоты для АВК рассчитываются просто: Fn = Fи/Fс(21 ТВК) + 8(N – 21), где N – номер нужного канала. Напр. для 39 ТВК Fи = 615,25 МГц, а Fс = 610 МГц.

Чтобы не записывать множество цифр, удобно размеры АВК выражать в долях длины рабочей волны (она считается как Л = 300/F, МГц). Длину волны принято обозначать малой греческой буквой лямбда, но, поскольку в интернете греческого алфавита по умолчанию нет, мы условно обозначим ее большой русской Л.

Размеры оптимизированной под цифру АВК, по рис., таковы:

U-петля: УСС для АВК

  • Р = 0,52Л.
  • В = 0,49Л.
  • Д1 = 0,46Л.
  • Д2 = 0,44Л.
  • Д3 = 0,43л.
  • a = 0,18Л.
  • b = 0,12Л.
  • c = d = 0,1Л.

Если не нужно большого усиления, но важнее уменьшение габаритов АВК, то Д2 и Д3 можно убрать. Все вибраторы выполняются из трубки или прутка диаметром 30-40 мм для 1-5 ТВК, 16-20 мм для 6-12 ТВК и 10-12 мм на ДМВ.

АВК требует точного согласования с кабелем. Именно небрежным выполнением устройства согласования и симметрирования (УСС) объясняется большинство неудач любителей. Самое простое УСС для АВК – U-петля из того же коаксиального кабеля. Ее конструкция ясна из рис. справа. Расстояние между сигнальными клеммами 1-1 140 мм для 1-5 ТВК, 90 мм для 6-12 ТВК и 60 мм на ДМВ.

Теоретически длина колена l должна быть в половину длины рабочей волны, так и значится в большинстве публикаций в интернете. Но ЭМП в U-петле сосредоточено внутри заполненного изоляцией кабеля, поэтому нужно обязательно (для цифры – особенно обязательно) учитывать его коэффициент укорочения. Для 75-омных коаксиалов он колеблется в пределах 1,41-1,51, т.е. l нужно брать от 0,355 до 0,330 длины волны, и брать точно, чтобы АВК была АВК, а не набором железок. Точное значение коэффициента укорочения всегда есть в сертификате на кабель.

В последнее время отечественная промышленность начала выпускать перенастраиваемые АВК для цифры, см. рис. Идея, надо сказать, отличная: передвигая элементы по стреле, можно точно настроить антенну под местные условия приема. Лучше, конечно, чтобы это делал специалист – поэлементная настройка АВК взаимозависима, и дилетант непременно запутается.

АВК для цифрового ТВ

О «полячках» и усилителях

У многих пользователей польские антенны, ранее прилично принимавшие аналог, цифру брать отказываются – рвется, а то и вовсе пропадает. Причина, прошу прощения, похабно-коммерческий подход к электродинамике. Стыдно порой бывает за коллег, сляпавших такое «чудо»: АЧХ и ФЧХ похожи то ли на ежа-псориазника, то ли лошадиный гребень с выломанными зубьями.

Единственно, что хорошо в «полячках» – их усилители для антенны. Собственно, они и не дают сим изделиям бесславно помереть. Усилители «поячек», во-первых, широкополосные малошумящие. И, что еще важнее – с высокоомным входом. Это позволяет при той же напряженности ЭМП сигнала в эфире подать на вход тюнера в несколько раз большую его мощность, что дает возможность электронике «выдрать» цифру из совсем уж безобразных шумов. Кроме того, вследствие большого входного сопротивления польский усилитель – идеальное УСС для любых антенн: что ни цепляй ко входу, на выходе – точно 75 Ом без отраженки и ползучки.

Однако при очень плохом сигнале, вне зоны уверенного приема, польский усилитель уже не тянет. Питание на него подается по кабелю, и развязка по питанию отнимает 2-3 дБ отношения сигнал/шум, которых может как раз и не хватить, чтобы цифра пошла в самой глубинке. Тут нужен хороший усилитель ТВ сигнала с раздельным питанием. Располагаться он будет, скорее всего, возле тюнера, а УСС для антенны, если оно требуется, придется делать отдельно.

Усилитель ТВ сигнала ДМВ

Схема такого усилителя, показавшая почти 100% повторяемость даже при выполнении начинающими радиолюбителями, приведена на рис. Регулировка усиления – потенциометром Р1. Дроссели развязки L3 и L4 – стандартные покупные. Катушки L1 и L2 выполняются по размерам на монтажной схеме справа. Они входят в состав полосовых фильтров сигнала, поэтому небольшие отклонения их индуктивности не критичны.

Однако топологию (конфигурацию) монтажа нужно соблюдать точно! И точно также обязателен металлический экран (metal shield), отделяющий выходные цепи от прочей схемы.

С чего начать?

Мы надеемся, что и опытные мастера найдут в этой статье некоторое количество полезных им сведений. А новичкам, еще не чувствующим эфир, начинать лучше всего с пивной антенны. Автор статьи, отнюдь и отнюдь не дилетант в данной области, в свое время был немало удивлен: простейшая «пивнушка» с ферритовым согласованием, как оказалось, и МВ берет не хуже испытанной «рогатки». А что стоит сделать ту и другую – см. текст.

Как известно - магнитные антенны, хотя и имеют небольшие размеры, но по эффективности приближаются к полуволновому диполю. Ключевым моментом при изготовлении таких антенн является применение материалов с низким сопротивлением, иначе эффективность ее резко падает. Особое внимание также обращается на тщательную пропайку всех элементов антенны. Так как алюминий плохо поддается пайке - его редко используют в петлевых антеннах. Чаще применяются медные трубки диаметром от 12 до 50 мм.

Несмотря на все сказанное, я изготовил магнитную петлевую антенну из полосок фольгированного стеклотекстолита. Они довольно легкие, хорошо паяются и значительно дешевле, чем медная труба. Фольга на стеклотекстолите довольно тонкая, поэтому Вы можете подумать, что она имеет более высокое сопротивление по сравнению с медной трубкой. Тем не менее надо помнить о "поверхностном эффекте", который проявляется на высоких частотах. Поэтому тонкая фольга не проигрывает по сравнению с толстой медной трубкой. Толщина проводника не имеет значения на высоких частотах. Например, для меди, при частоте сигнала 10 МГц глубина проявления "поверхностного эффекта" всего 21 микрон, а с увеличением частоты она уменьшается обратно-пропорционально корню квадратному из частоты. Здесь главное площадь и поэтому большая поверхность фольги может быть даже эффективнее медной трубки!

Толщина меди фольгированного стеклотекстолита около 50 микрон. Если для частоты 10 МГц достаточно 21 микрон, то антенна, изготовленная из такого материала будет хорошо работать и на более высоких частотах.

Для изготовления антенны используются полоски двухстороннего фольгированного стеклотекстолита длиной 40 см и шириной 7 см. Всего понадобится семь полос. Общая длина ленты составит около 270 см, а диаметр получившейся петли будет около 90 см. Как соединяются полосы - видно из рисунка. Каждая полоса перекрывает со смежной полосой 2 см. Все стыки плотно стягиваются двумя винтами. Обе стороны полос стеклотекстолита соединены медной фольгой, пропаянной с обеих сторон пластины. Это увеличивает полезную площадь антенны. Выводы к переменному конденсатору сделаны из медной оплетки кабеля и также тщательно припаиваются к пластинам. Простое винтовое соединение здесь недопустимо из-за низкой эффективности.
Остальная часть конструкции незначительно отличается от обычных петлевых антенн и понятна из приведенного рисунка.

Результаты экспериментов. Изготовленная петля была установлена горизонтально снаружи окна моей квартиры (1-й этаж пятиэтажного здания). От земли до петли было 3 метра, а от стены дома - 1,3 м. КСВ составил 1,5 и менее для диапазонов 10 МГц и 14 МГц. В течении нескольких месяцев после изготовления антенны я работал со станциями всей Японии, Окинавой и одной станцией из Кореи на диапазоне 10 МГц телеграфом с передатчиком мощностью 3 Вт. На диапазоне 14 МГц проводил связи с дальневосточными станциями, такими, как Корея, Китай, азиатская часть России, Тайвань и Гонконг при той-же мощности передатчика 3 Вт. Сам я живу в Chiba - восточнее Токио 30 км.

Петлевой вибратор, который анализировался ранее, не является единственным вариантом петлевой антенны. К этой группе антенн принадлежит также большое количество других вариантов антенн, которые и будут рассмотрены в данном параграфе.

Обратимся к рис. 5.118а , на котором показана трансформация петлевого вибратора (сплошная линия) в квадрат (пунктирная линия) со стороной λ/4 . Полученная таким образом антенна получила название антенны «квадратный ромб» , а иная конфигурация той же антенны (рис. 5.118г ) типа «квадрат» .

В этих антеннах точки В и D приближаются друг к другу и расстояние между ними составляет 0,35λ для антенны «квадратный ромб» и 0,25λ для антенны типа «квадрат». Одновременно точки А и С удаляются друг от друга.

В антенне типа «квадрат», показанной на рис. 5.118г , токи, протекающие по горизонтальным проводам антенны, синфазны, а токи, протекающие по вертикальным проводам, противофазны. Аналогичная картина наблюдается и в антенне «квадратный ромб». Чтобы убедиться в этом, достаточно разложить на вертикальные и горизонтальные составляющие токи, протекающие по всем четырем сторонам антенны (рис. 5.118е ).

Изменение точек подключения питания антенны (рис. 5.118в , д ) приводит к изменению поляризации излучения антенны; антенна излучает вертикально поляризованную волну.

Различные схемы питания антенны показаны на рис. 5.119. Отметим, что в точке С , находящейся «напротив» точки подключения питания А , появляется узел напряжения. Это свойство антенны позволяет соединить заземление мачты именно с этой точкой антенны, что естественно, в значительной мере упрощает конструкцию антенны в целом. Одновременно отметим, что точки В и D имеют наибольший потенциал, и поэтому при креплении несущих элементов антенны к этим точкам требуются хорошие изоляторы.

Наиболее эффективно излучающая часть антенны типа «квадрат», т. е. та часть антенны, по которой протекают наибольшие токи, имеет длину около 0,25λ . Некоторое укорочение излучающей части антенны, приводящее к снижению уровня излученного поля, в избытке компенсируется наличием противоположной синфазно возбужденной части антенны, вследствие чего результирующее усиление на 1 дБ больше, чем усиление полуволнового диполя.

Направленные свойства антенны типа «квадрат» в не очень большой степени зависят от формы антенны. В плоскости XY диаграмма направленности антенны близка к диаграмме полуволнового диполя, т. е. имеет вид восьмерки. В экваториальной плоскости диаграмма имеет вид эллипса, большая ось которого нормальна к плоскости антенны. Отметим также, что, кроме главного лепестка в диаграмме излучения присутствуют боковые лепестки с небольшим уровнем излучения, которые имеют другую, ортогональную поляризацию излучения.

Достаточно интересным является сопоставление диаграмм направленности дипольных антенн и различных модификаций петлевых антенн, расположенных на небольшой высоте над землей. На рис. 5.120 приведены такие диаграммы, полученные при условии, что ни одна точка антенны не расположена над землей на высоте большей, чем λ/4 . На этих рисунках сплошные линии соответствуют горизонтальной поляризации, а пунктирные - вертикальной. Интересно отметить, что при использовании петлевой антенны в форме «дельта» (форма антенны напоминает греческую букву дельта - Δ ) наблюдается большой уровень излучения вертикально поляризованной волны под сравнительно малыми углами относительно горизонта (рис. 5.120и , к ), что благоприятно для организации длинноволновой радиосвязи.

Показанные на рис. 5.120 варианты петлевых антенн значительно расширяют возможности использования этих антенн по сравнению с антеннами, схемы которых приведены на рис. 5.118 и 5.119. Можно сказать, что свойства практически всех вариантов петлевых антенн не изменяются в больших пределах, если периметр антенны c = λ . Здесь же отметим, что петлевая антенна, периметр которой равен длине волны, является основным вариантом реализации магнитного диполя (см. также § 5.7).

Теперь рассмотрим вопрос с соотношении физической и электрической длин петлевых антенн. Если раньше при анализе дипольных антенн мерой соотношения двух указанных длин являлся коэффициент укорочения, то для этой группы антенн необходимо ввести понятие коэффициента удлинения К .

Значение коэффициента удлинения зависит от отношения c/d , где с - периметр антенны, d - диаметр провода, из которого выполнена антенна.

Коэффициент удлинения $$\begin{equation}K=1+\frac{0,4}{W_s}+\frac{3}{W_s^2}\end{equation}\tag{5.13}$$ где коэффициент W S задается выражением $$\begin{equation}W_s=2\ln\left(2,54\frac{c}{d}\right)\end{equation}\tag{5.14}$$

Вместо вычисления коэффициента удлинения по приведенным формулам можно определить значение К с помощью графиков на рис. 5.121. Сначала для заданного отношения c/d на графике рис. 5.121а отыскивают значение коэффициента W S , а по графику на рис. 5.121б определяют значение К .

С помощью графиков, приведенных на рис. 5.122, можно также определить усиление антенны (относительно усиления полуволнового диполя).




Top