DIY mikrohullámú térérzékelők és indikátorok. DIY elektromágneses sugárzás detektor. TESZT Teszteszköz

Nagyon meglepődtem, amikor a munkahelyi étkezdénk egy működő mikrohullámú sütő mellett lemerült a vízkőről az egyszerű házi detektor-jelzőm. Ez mind árnyékolt, lehet, hogy valami hiba van? Úgy döntöttem, hogy megnézem az új tűzhelyemet, alig volt használva. A mutató is eltért a teljes skálához!

1. ábra

Minden alkalommal, amikor az adó- és vevőberendezések helyszíni tesztjére megyek, rövid idő alatt összeállítok egy ilyen egyszerű jelzőt (1. ábra). Sokat segít a munkában, nem kell sok eszközt magaddal cipelni, egy egyszerű házi készítésű termékkel mindig könnyen ellenőrizhető az adó működőképessége (ahol nincs teljesen becsavarva az antennacsatlakozó, ill. elfelejtette bekapcsolni az áramot). Az ügyfelek nagyon szeretik ezt a stílusú retro jelzőt, és ajándékba kell hagyniuk.

Előnye a tervezés egyszerűsége és a teljesítmény hiánya. Örök készülék.

Könnyű megcsinálni, sokkal könnyebb, mint pontosan ugyanazElosztóból és lekvártálból készült detektor » középhullám tartomány. Hálózati hosszabbító (tekercs) helyett - egy darab rézhuzal; analógia szerint több vezeték is lehet párhuzamosan, nem lesz rosszabb. Maga a huzal egy 17 cm hosszú, legalább 0,5 mm vastag kör alakú (a nagyobb rugalmasság érdekében három ilyen vezetéket használok) egy oszcilláló áramkör az alján és egy hurokantenna a tartomány felső részén, amely tartományban mozog. 900-tól 2450 MHz-ig (nem ellenőriztem a fenti teljesítményt). Lehetséges bonyolultabb irányított antenna és bemenet illesztés alkalmazása, de egy ilyen eltérés nem felelne meg a téma címének. Váltakozó, épület vagy csak kondenzátor (más néven medence) nem kell, a mikrohullámú sütőhöz két csatlakozó van egymás mellett, már egy kondenzátor.

Nem kell germánium diódát keresni, helyette PIN-dióda HSMP: 3880, 3802, 3810, 3812 stb., vagy HSHS 2812 (én használtam). Ha a mikrohullámú sütő frekvenciája (2450 MHz) fölé szeretne mozogni, akkor kisebb kapacitású (0,2 pF) diódákat válasszon, a HSMP -3860 - 3864 diódák megfelelőek lehetnek.. Telepítéskor ne melegítse túl. Pontforrasztani kell - gyorsan, 1 másodperc alatt.

A nagy impedanciájú fejhallgatók helyett tárcsajelző található. A magnetoelektromos rendszer előnye a tehetetlenség. A szűrőkondenzátor (0,1 µF) segíti a tű egyenletes mozgását. Minél nagyobb az indikátor ellenállása, annál érzékenyebb a terepi mérő (a mutatóim ellenállása 0,5 és 1,75 kOhm között van). Az eltérõ vagy rángatózó nyílban rejlõ információ varázslatos hatással van a jelenlévõkre.

Egy ilyen térjelző, amelyet a mobiltelefonon beszélő ember feje mellé szerelnek, először az arcán vált ki ámulatot, esetleg visszahozza a valóságba, és megóvja az esetleges betegségektől.

Ha még van erőd és egészséged, mindenképpen mutasd az egeret valamelyik cikkre.

A mutatóeszköz helyett használhat egy tesztert, amely a legérzékenyebb határon méri az egyenfeszültséget.

Kipróbáltam LED jelzőfényként. Ez a kialakítás (2., 3. ábra) tervezhető kulcstartó formájában egy lapos 3 voltos akkumulátorral, vagy egy üres tokba helyezhető mobiltelefon. A készülék készenléti árama 0,25 mA, az üzemi áram közvetlenül függ a LED fényességétől, és körülbelül 5 mA lesz. A diódával egyenirányított feszültséget a műveleti erősítő felerősíti, felhalmozódik a kondenzátoron, és kinyitja a tranzisztoron lévő kapcsolókészüléket, amely bekapcsolja a LED-et.


2. ábra


3. ábra

Ha az akkumulátor nélküli tárcsajelző 0,5-1 méteres sugarú körben eltért, akkor a diódán lévő „színes zene” akár 5 méterrel is elmozdult, mind a mobiltelefonból, mind a mikrohullámú sütőből. Nem tévedtem a színes zenével kapcsolatban, győződjön meg róla, hogy a maximális teljesítmény csak mobiltelefonon beszélve és idegen hangos zajok jelenlétében lesz.

A könnyebb használat érdekében ronthatja az érzékenységet az 1 mOhm-os ellenállás csökkentésével vagy a huzalfordulat hosszának csökkentésével. A megadott terepi értékekkel 50 - 100 m sugarú körben érzékelhető a telefonbázisállomások mikrohullámú sütője, ilyen jelzővel elkészítheti a környék ökológiai térképét és kiemelheti azokat a helyeket, ahol nem lóghat babakocsival ill. maradj sokáig gyerekekkel. Ennek az eszköznek köszönhetően arra a következtetésre jutottam, hogy melyik mobiltelefon jobb, vagyis kevesebb a sugárzásuk. Mivel ez nem reklám, pusztán bizalmasan mondom, suttogva. A legjobb telefonok- ezek modernek, internet hozzáféréssel, minél drágább, annál jobb.


4. ábra

A gazdaságos terepjelző eredeti kialakítása egy Kínában készült ajándéktárgy. Ez az olcsó játék a következőket tartalmazza: rádió, dátummal ellátott óra, hőmérő és végül terepjelző. A keret nélküli, elárasztott mikroáramkör elhanyagolhatóan kevés energiát fogyaszt, hiszen időzített üzemmódban működik, mobiltelefon bekapcsolására 1 méter távolságból reagál, fényszóróval ellátott vészriasztó néhány másodperces LED-es jelzését szimulálva. Az ilyen áramkörök programozható mikroprocesszorokon valósulnak meg minimális számú alkatrészrel.

Vjacseszlav Jurjevics

Moszkva, 2012. december

Szinte minden kezdő rádióamatőr próbált már rádióhibát összeállítani. Weboldalunkon jó néhány áramkör található, amelyek közül sok csak egy tranzisztort, egy tekercset és egy kábelköteget tartalmaz - több ellenállást és kondenzátort. De még akkor is egyszerű diagram Speciális felszerelés nélkül nem lesz könnyű helyesen konfigurálni. Nem beszélünk a hullámmérőről és a HF frekvenciamérőről - a kezdő rádióamatőrök általában még nem szereztek ilyen bonyolult és drága eszközöket, de egy egyszerű HF detektor összeszerelése nem csak szükséges, hanem feltétlenül szükséges.

Az alábbiakban a részleteket közöljük.


Ez az érzékelő lehetővé teszi annak meghatározását, hogy van-e nagyfrekvenciás sugárzás, vagyis generál-e jelet az adó. Természetesen nem mutatja a frekvenciát, de ehhez használhat egy normál FM rádióvevőt.


Az RF detektor kialakítása bármilyen lehet: falra szerelhető vagy kis műanyag doboz, amibe egy számlapjelző és egyéb alkatrészek is elférnek, illetve az antenna (5-10 cm vastag vezetékdarab) kerül ki. A kondenzátorok bármilyen típusúak használhatók, a névleges részleges eltérések nagyon széles tartományon belül megengedettek.


RF sugárzásérzékelő alkatrészek:

- Ellenállás 1-5 kiloohm;
- 0,01-0,1 mikrofarad kondenzátor;
- 30-100 pikofarad kondenzátor;
- D9, KD503 vagy GD504 dióda.
- Mutatós mikroampermérő 50-100 mikroamperhez.


Maga az indikátor bármi lehet, még akkor is, ha nagy áramerősségre vagy feszültségre vonatkozik (voltmérő), csak nyissa ki a házat, és távolítsa el a készülék belsejében lévő sönt, és alakítsa át mikroampermérővé.


Ha nem ismeri a mutató jellemzőit, akkor annak megtudásához, hogy mekkora az áramerőssége, egyszerűen csatlakoztassa először egy ohmmérőhöz egy ismert áramerősséggel (ahol a jelölés látható), és emlékezzen a skála eltérésének százalékára.


Ezután csatlakoztasson egy ismeretlen mutatóeszközt, és a mutató eltérítésével világossá válik, hogy milyen áramra tervezték. Ha egy 50 µA-es jelző teljes eltérést ad, és egy ismeretlen eszköz azonos feszültség mellett fél eltérést ad, akkor ez 100 µA.


Az egyértelműség kedvéért összeszereltem egy felületre szerelt RF jeldetektort, és egy frissen összeszerelt FM rádiómikrofon sugárzását mértem.


Ha az adóáramkör 2V-ról van táplálva (erősen zsugorodott korona), az érzékelőtű a skála 10%-ával eltér. Friss 9V-os elemmel pedig majdnem a fele.

Egy nagyfrekvenciás elektromágneses sugárzásra érzékeny készülék diagramját szeretném bemutatni. Különösen a bejövő és kimenő mobiltelefon-hívások jelzésére használható. Például, ha a telefon néma módban van, akkor ez az eszköz lehetővé teszi a bejövő hívások vagy SMS-ek gyors észlelését.

Mindez elfér egy 7 cm hosszú szerelőlapon.

A tábla nagy részét a kijelző áramkör foglalja el.

Itt van egy antenna is.


Az antenna tetszőleges, legalább 15 cm hosszú vezetékdarab lehet, én tekercshez hasonló spirál formában készítettem. A szabad vége egyszerűen a táblához van forrasztva, hogy ne lógjon. Sokféle antenna formát kipróbáltak már, de arra a következtetésre jutottam, hogy nem a forma a fontos, hanem az antenna hossza, amivel lehet kísérletezni.

Nézzük a diagramot.


Itt egy tranzisztoros erősítőt szerelnek össze.
A KT3102EM-et VT1 tranzisztorként használták. Azért döntöttem így, mert nagyon jó az érzékenysége.

Az összes többi tranzisztor (VT2-VT10) 2N3904.

Nézzük a jelzőáramkört: a VT4-VT10 tranzisztorok itt a kulcselemek, amelyek mindegyike bekapcsolja a megfelelő LED-et, amikor jel érkezik. Bármilyen ilyen léptékű tranzisztor használható, még a KT315 is, de forrasztáskor kényelmesebb a TO-92 csomagban lévő tranzisztorok használata a terminálok kényelmes elhelyezkedése miatt.
Itt küszöbdiódákat (VD3-VD8) használnak, ezért mindig csak egy LED világít, jelezve a jelszintet. Igaz, ez nem történik meg a mobiltelefon sugárzásával kapcsolatban, mivel a jel folyamatosan magas frekvencián pulzál, amitől szinte minden LED világít.


A „LED-tranzisztoros” cellák száma nem lehet több nyolcnál. Az alapellenállások értéke itt megegyezik és 1 kOhm. A névleges érték a tranzisztorok erősítésétől függ, a KT315 használatakor 1 kOhm-os ellenállásokat is kell használni.

A Schottky diódákat célszerű VD1, VD2 diódaként használni, mivel kisebb a feszültségesésük, de minden működik még a közös 1N4001 használata esetén is. Az egyik (VD1 vagy VD2) kizárható, ha a jelzés túl magas.
Az összes többi dióda (VD3 - VD8) ugyanaz az 1N4001, de megpróbálhatja bármelyik kéznél lévő dióda használatát.

A C2 kondenzátor elektrolitikus, optimális kapacitása 10-22 μF, a LED-ek kialudását a másodperc töredékéig késlelteti.

Az R13 ÉS R14 ellenállások értéke a LED-ek által felvett áramerősségtől függ, és 300-680 Ohm között mozog, de az R13 ellenállás értéke változtatható a tápfeszültségtől függően, vagy ha a LED skála nem elég fényes. Ehelyett forraszthat egy trimmer ellenállást, és elérheti a kívánt fényerőt.

A kártyán van egy kapcsoló, amely bekapcsol egy bizonyos „turbó üzemmódot”, és átengedi az áramot az R13 ellenálláson, aminek következtében a skála fényereje nő. Krona elemmel használom, ha lemerül és a LED skála elhalványul. A kapcsoló nincs feltüntetve a diagramon, mert nem kötelező.

A tápfeszültség bekapcsolása után a HL8 LED-je azonnal kigyullad, és egyszerűen jelzi, hogy az eszköz be van kapcsolva.

Az áramkör 5-9 V feszültséggel működik.

Ezután készíthetsz neki tokot például átlátszó műanyagból, alapként pedig fólia PCB használható. Ha antennát csatlakoztat a tábla fémezéséhez, lehetséges, hogy növelje a nagyfrekvenciás sugárzás indikátorának érzékenységét.

Egyébként a mikrohullámú sugárzásra is reagál.

Radioelemek listája

Kijelölés típus Megnevezés Mennyiség jegyzetÜzletA jegyzettömböm
VT1 Bipoláris tranzisztor

KT3102EM

1 Jegyzettömbhöz
VT2-VT10 Bipoláris tranzisztor

2N3904

9 Jegyzettömbhöz
VD1 Schottky dióda

1N5818

1 Bármilyen Schottky dióda Jegyzettömbhöz
VD2-VD8 Egyenirányító dióda

1N4001

7 Jegyzettömbhöz
C1 Kerámia kondenzátor1-10 nF1 Jegyzettömbhöz
C2 Elektrolit kondenzátor10-22 µF1 Jegyzettömbhöz
R1, R4 Ellenállás

1 MOhm

2 Jegyzettömbhöz
R2 Ellenállás

470 kOhm

1 Jegyzettömbhöz
R3, R5 Ellenállás

10 kOhm

2

Rádióállomás létesítésekor, rádiós szmog jelenlétének meghatározásakor, rádiós szmog forrásának keresésekor, rejtett adók és mobiltelefonok észlelésekor RF térjelzőre lehet szükség. A készülék egyszerű és megbízható. Saját kezűleg összeszerelve. Minden alkatrészt az Aliexpressen vásároltak nevetséges áron. Egyszerű ajánlásokat, fényképeket és videókat adunk.

Hogyan működik az RF térjelző áramkör?

Az RF jelet az L tekercsen kiválasztott, 1SS86-os diódával egyenirányító antennába juttatjuk, és egy 1000 pF-os kondenzátoron keresztül az egyenirányított jelet három 8050-es tranzisztor segítségével egy jelerősítőbe tápláljuk.Az erősítő terhelése LED. Az áramkört 3-12 voltos feszültség táplálja.

HF mezőjelző kialakítás


Az RF térjelző helyes működésének ellenőrzésére a szerző először összeállított egy áramkört egy kenyérsütőtáblán. Ezután az antenna és az akkumulátor kivételével minden alkatrészt ráhelyezünk nyomtatott áramkör mérete 2,2 cm × 2,8 cm A forrasztás kézzel történik, és nem okozhat nehézséget. Az ellenállások színkódolásának magyarázata a képen látható. A térjelző érzékenységét egy adott frekvenciatartományban az L tekercs paraméterei befolyásolják. A tekercshez a szerző 6 menet huzalt tekercselt egy vastag golyóstollara. A gyártó 5-10 fordulatot ajánl a tekercshez. Az antenna hossza is erősen befolyásolja a jelző működését. Az antenna hosszát kísérleti úton határozzuk meg. Erős HF szennyezés esetén a LED folyamatosan világít, és az antenna hossza lerövidül. az egyetlen módja az indikátor helyes működése.

Jelző a kenyérsütőtáblán

Részletek a jelzőtáblán

TARTALOM:

Az elmúlt években (sőt, talán már egy-két évtizede) a mikrohullámú sugárzás aktuálissá vált. Pontosabban ez ultramagas frekvenciájú elektromágneses sugárzás (frekvencia, hozzávetőlegesen 300...400 MHz-től 300 GHz-ig, hullámhossz 1 mm-től 0,5...1 m-ig). A média dirigál Ebben a pillanatban, heves viták folynak arról, hogy ez a sugárzás káros-e vagy sem, kell-e tartani tőle, van-e káros hatása vagy figyelmen kívül hagyható.

Nem megyünk mélyre itt, és nem bocsátkozunk bizonyítékokkal vagy cáfolatokkal, mert ennek a sugárzásnak a negatív hatásának tényei jól ismertek, orvostudósok (például szovjet tudósok) bizonyították már a múlt században - a 60-as években. Számos kísérletet végeztek egereken és patkányokon (nem emlékszünk, mi a helyzet más állatokkal). Különböző intenzitású centiméteres, deciméteres és egyéb hullámokkal sugározták be... E vizsgálatok alapján születtek meg a mikrohullámú sugárzásra vonatkozó szovjet GOST szabványok, amelyek egyébként a legszigorúbbak voltak a világon. Pontosan a mikrohullámú sugárzás káros hatása miatt, amelyet a Szovjetunió orvosai azonosítottak, betiltották a mikrohullámú sütőket (tömeges használatra); és nem a nagyüzemi termelésük megszervezésének állítólagos hiánya miatt.

Vannak tudományos cikkek , monográfiák. Bárki megismerkedhet velük önállóan. Még Ufában is megtalálhatók az N.K.-ról elnevezett könyvtárban. Krupskaya (jelenleg Zaki-Validi Könyvtárnak hívják); Nos, Moszkvában és más hasonló városokban, azt hiszem, ezzel nincs különösebb probléma. Azok számára, akiknek van rá vágyuk, valószínűleg könnyű eltölteni néhány napot és olyan könyveket olvasni, mint például „Az EMR hatása az élő szervezetekre”. Hogy ezek a nagyon élő szervezetek először kivörösödtek, majd lázasan rohangáltak a sejtek körül, majd elpusztultak a nagy dózisú mikrohullámok hatására. Még a látszólag kismértékű mikrohullámú sugárzás (a hőküszöb alatti) hosszú távú dózisai hogyan vezettek az anyagcsere változásaihoz (patkányokban, egerekben), részben meddőséghez stb. Ezért a vita itt láthatóan nem helyénvaló. Kivéve persze, ha úgy tesz, mintha ez a kutatás „hibás”, „senki sem tudja biztosan, hogy káros-e vagy sem” stb. – általában csak hasonló, mondhatni „érvek” állnak az ezt megkérdőjelezni kívánók rendelkezésére.

Ezután a piac elkezdődött a Szovjetunióban (vagyis a FÁK-ban). A mobilkommunikáció fejlődésével együtt. Valahogy igazolni a tornyok jelenlétét cellás kommunikáció(és internetszolgáltatók), az államnak csökkentenie kellett a GOST-ok súlyosságát. Ennek eredményeként a GOST szabványokban előírt maximális megengedett sugárzási dózisok nőttek. 10-enként egyszer. Azt a szintet, amelyet korábban elfogadhatónak tartottak a repülőtéri és radaros dolgozók számára (az ilyen dolgozók korábban többletfizetést kaptak a káros tevékenységekért, és számos kedvezményben részesültek), ma már a teljes lakosság számára elfogadhatónak tekinthető.

A mikrohullámú sugárzás hatása az élő szervezetekre

Tehát mit mond a tudomány a mikrohullámú sugárzás testre gyakorolt ​​hatásairól? Nézzünk csak néhány eredményt tudományos a múlt század 60-as...70-es éveiben végzett kutatások. Tekercs tudományos munkákés itt nem idézünk publikációkat, csupán néhány rövid áttekintésére szorítkozunk. Úgy tűnik, jelentős mennyiségű védekezés történt ebben a témában. szakdolgozatok, kandidátusi és doktori tézisek is, de a legtöbb tudományos eredményeket nyilvánvaló okokból valószínűleg ismeretlen a nagyközönség számára. A tudósok bebizonyították, hogy a testet érő elektromágneses mezők hosszú távú szisztematikus expozíciója, különösen mikrohullámú sütőben (3×10 9 ...3×10 10 Hz) és UHF-ben (3×10 8 ... 3×10 9 Hz) tartományok, a maximálisan megengedett intenzitás felett, bizonyos funkcionális változásokhoz vezethetnek benne, elsősorban az idegrendszerben. jegyzet: ezekben az években a mikrohullámú és UHF energiának való kitettség következő megengedett legnagyobb szintjeit állapították meg:

egész munkanapon át besugározva - 10 μW/cm 2 (0,01 mW/cm 2)
munkanaponként legfeljebb 2 órás besugárzással - 100 μW/cm2 (0,1 mW/cm2)
besugárzással 15-20 perc. Egy munkanapra - 1000 µW/cm2 (1 mW/cm2), kötelező védőszemüveg használatával; a nap többi részében több mint 10 μW/cm2.


Ezek a változások elsősorban fejfájásban, alvászavarban, fokozott fáradtságban, ingerlékenységben stb. A jóval a hőküszöb alatti intenzitású mikrohullámú mezők az idegrendszer kimerülését okozhatják. Az elektromágneses terek biológiai hatásaiból adódó funkcionális változások a szervezetben felhalmozódhatnak (felhalmozódhatnak), de visszafordíthatók, ha a sugárzás megszűnik, vagy a munkakörülmények javulnak.

Különös figyelmet kell fordítani a morfológiai változásokra, amelyek a szemben előfordulhatnak, és súlyos esetekben szürkehályoghoz (a lencse elhomályosulásához) vezethetnek. Ezeket a változásokat különböző hullámhosszú - 3 cm-től 20 m-ig terjedő - sugárzás hatására észlelték, mind a rövid távú, nagy, termogén intenzitású (több száz mW/cm 2 ) besugárzás során, mind pedig a hosszú távú, legfeljebb több éves, több mW/cm 2 intenzitású besugárzás, azaz. a termikus küszöb alatt. A pulzáló sugárzás (nagy intenzitású) veszélyesebb a szemre, mint a folyamatos sugárzás.

A vér morfológiai változásai az összetétel változásában fejeződnek ki, és a centiméteres és deciméteres hullámok legnagyobb hatását jelzik (azaz pontosan ugyanazok a hullámok, amelyeket a cellás kommunikációban, mikrohullámú sütőben, Wi-Fi-ben stb. használnak).

Az elektromágneses mezőknek való kitettség által okozott változások egy másik típusa az idegrendszer szabályozó funkciójának megváltozása, amely a következők megsértésében fejeződik ki:
A) Korábban kialakult feltételes reflexek
B) A szervezetben zajló élettani és biokémiai folyamatok természete és intenzitása
B) Az idegrendszer különböző részeinek működése
D) A szív- és érrendszer idegi szabályozása

Asztal 1

Szív- és érrendszeri rendellenességek olyan embereknél, akik szisztematikusan ki vannak téve különböző frekvenciájú elektromágneses mezőknek

Mezőbeállítások Az ezzel a rendellenességgel járó esetek százalékos aránya a vizsgált emberek csoportjában
Frekvenciatartomány Intenzitás Artériás hipotenzió Bradycardia Lassú intraventrikuláris vezetés
Mikrohullámú (centiméteres hullámok) (3 × 10 9 … 3 × 10 10 Hz) <1 мВт/см 2 28 48 25
VHF (3 × 10 7 … 3 × 10 8 Hz) Termikus küszöb alatt 17 24 42
HF (3 × 10 6 … 3 × 10 7 Hz) Tíz-száz V/m 3 36 -
MF (3 × 10 5 … 3 × 10 6 Hz) Több száztól 1000 V/m-ig 17 17 -
Mezők hiányában 14 3 2

A szív- és érrendszerben bekövetkező változások a fent említett hipotenzió, bradycardia és az intragasztrikus vezetés lassulása, valamint a vérösszetétel változásaiban, a májban és a lépben bekövetkező változásokban fejeződnek ki, amelyek mindegyike nagyobb gyakorisággal kifejezettebb. A 2. táblázat bemutatja az élő szervezetben a mikrohullámú sugárzás hatására fellépő rendellenességek fő típusait.

2. táblázat

Az élő szervezetekben megfigyelt eltolódások természete krónikus állatokon végzett kísérletekben (A. N. Berezinskaya, Z. V. Gordon, I. N. Zenina, I. A. Kitsovskaya, E. A. Lobanova, S. V. Nikogosyan, M S. Tolgskaya, P. P. Fukalova)

Feltárt funkciók A változások természete
hisztamin Megnövekedett vérszint, hullámszerű változások
Vaszkuláris tónus Hipotenzív hatás
Perifériás vér Leukopéniára való hajlam, a fehér vonal változása (szegmentált neutrofilek számának csökkenése)
Szexuális funkció, petefészek működése Az ivarzási ciklus megzavarása
Termékenység Csökken a besugárzott nőstények száma, hajlam a terhesség utáni terhességre, halvaszületésre
Utódok Fejlődési késés, magas szülés utáni mortalitás
Szemek Retina angiopátia, szürkehályog

A különböző rádiófrekvenciás hullámhosszok biológiai hatásai általában azonos irányúak. Bizonyos hullámhosszakra azonban vannak specifikus biológiai hatások.

3. táblázat

Hullámtartomány A besugárzás intenzitása Az állatok elhullásának ideje percben és %-ban
50% 100%
Közepes (500 kHz) 8000 V/m Nem
Rövid 5000 V/m 100
14,88 MHz 9000 V/m 10
Ultra rövid 5000 V/m
69,7 MHz 2000 V/m 1000-120 130-200
155 700 V/m 100-120 130-200
191 350 V/m 100-150 160-200
mikrohullámú sütő
deciméter 100 mW/cm2 60
Centiméter
10 cm 100 mW/cm2 15 60
3 cm 100 mW/cm2 110
Milliméter 100 mW/cm2 180

4. táblázat

Az állatok túlélése, ha különböző hullámhosszoknak vannak kitéve

Hullámtartomány Az állatok pusztulását nem okozó expozíció időtartama
100 mW/cm2 40 mW/cm2 10 mW/cm2
deciméter 30 perc >120 perc >5 óra
10 cm 5 perc 30 perc >5 óra
3 cm 80 perc >180 perc >5 óra
Milliméter 120 perc >180 perc >5 óra

Megjegyzés: 1 mW/cm2 = 1000 µW/cm2

5. táblázat

Az állatok élettartama

Besugárzási intenzitás, mW/cm 2 Minimális halálos expozíció, min Dózis, mW/cm 2 /h
150 35 87
97 45 73
78 56 73
57 80 76
45 91 68

Tudományos kutatás 493 felnőtt hím állaton végezték el a tudósok: 213 150-160 g tömegű fehér patkányon és 280 18-22 g tömegű fehér egéren, amelyeket különböző csoportokban 3, 10 centiméteres és deciméteres hullámoknak tettek ki 10 intenzitással. mW/cm2. Az állatokat napi besugárzásnak tették ki 6...8 hónapig. Az egyes besugárzási ciklusok időtartama 60 perc volt. A 6. táblázat a besugárzott és kontroll állatok súlygyarapodására vonatkozó adatokat mutatja be.

A besugárzás hatására az állatok szerveiben és szöveteiben bizonyos szövettani változások következnek be. A szövettani vizsgálatok kimutatják a parenchymás szervek és az idegrendszer degeneratív elváltozásait, amelyek mindig proliferatív elváltozásokkal párosulnak. Ugyanakkor az állatok szinte mindig viszonylag egészségesek maradnak, ami a súlygyarapodás bizonyos mutatóit mutatja.

Érdekesség, hogy az alacsony dózisú sugárzás (5-15 perc) stimuláló jellegű: a kísérleti csoport állataiban valamivel nagyobb súlygyarapodást okoz a kontrollcsoporthoz képest. Nyilvánvalóan ez a test kompenzációs reakciójának hatása. Itt véleményünk szerint (nagyon durva) analógiát vonhatunk a jeges vízben úszással: ha néha rövid ideig úszunk jeges vízben, az segíthet a szervezet egészségének javításában; míg az ÁLLANDÓ bennmaradás természetesen a halálához vezet (hacsak nem egy fóka, rozmár, stb. szervezete). Igaz, van egy DE. A tény az, hogy végül is a víz természetes, TERMÉSZETES környezet az élő szervezetek, különösen az emberek számára (mint például a levegő). Míg a mikrohullámú hullámok gyakorlatilag hiányoznak a természetben (ha nem vesszük figyelembe a távoliakat, kivéve a Napot (aminek a mikrohullámú sugárzás szintje nagyon-nagyon alacsony), más galaxisokban, különféle kvazárokban találhatók. és néhány más kozmikus objektum, amelyek források Mikrohullám Természetesen sok élő szervezet is bocsát ki ilyen vagy olyan mértékben mikrohullámokat, de az intenzitás olyan alacsony (kevesebb, mint 10 -12 W/cm 2), hogy hiányzónak tekinthető.

6. táblázat

Az állatok súlyának változása mikrohullámú sugárzás hatására

Hullámtartomány (állat) Besugárzási intenzitás, mW/cm 2 Változások kezdete, hónapok Súlygyarapodás, g (átlagos adat)
Besugárzott Kontroll (nem besugárzott)
Deciméter (patkányok) 10 2 95 120
10 cm (patkányok) 10 1,5 25 70
10 cm (egerek) 10 1 0,5 2,9
3 cm (magasabb) 10 1 42 70
Milliméter (patkányok) 10 3 65 75

Így a mikrohullámú intenzitású hullámok teljes tartományában (10 mW/cm 2 = 10 000 μW/cm 2 -ig) 1...2 hónap elteltével a besugárzott állatok tömege elmarad a kontroll állatok tömegétől, amelyek nem voltak kitéve sugárzás.
Így a különböző tartományú nagyfrekvenciás elektromágneses terek hatásvizsgálatának eredményei alapján azonosították a különböző tartományú mezők veszélyességi fokát, kvantitatív kapcsolatot állapítottak meg e kölcsönhatás és olyan térparaméterek között, mint az erősség, ill. teljesítmény fluxus sűrűsége, valamint az expozíció időtartama.
Referenciaként: modern orosz mikrohullámú szabványok (SanPiN 2.2.4/2.1.8.055-96, az Állami Egészségügyi és Járványügyi Felügyeleti Bizottság határozata által jóváhagyva Orosz Föderáció 1996. május 8-án kelt 9. sz.) sugárzás (az energiaterhelés maximálisan megengedett értékei műszakonként) megfelelnek a 7., 8. táblázatban megadott paramétereknek.

7. táblázat

8. táblázat

Az energiaáram-sűrűség maximális megengedett szintjei a 300 MHz - 300 GHz frekvenciatartományban az expozíció időtartamától függően


Az expozíció időtartamától függetlenül az expozíció intenzitása nem haladhatja meg a 8. táblázatban megadott maximális értéket (1000 μW/cm2). Jellemző, hogy a SanPiN a megfelelő szovjet szabványoktól eltérően nem említi a védőszemüveg használatának szükségességét.

9. táblázat

Az RF EMR megengedett maximális szintje a lakosság, 18 év alatti személyek és terhes nők számára



Amellett, hogy a televíziók és radarállomások teljes körű megtekintési vagy pásztázási módban működik;
++ - körkörös megtekintési vagy pásztázási módban működő antennák sugárzása esetén

Így a maximálisan megengedhető dózis mindössze 10-szer alacsonyabb, mint az, amely napi 1 órás szisztematikus besugárzással 1...2 hónap elteltével az állatok fejlődésének lelassulását okozza. A mikrohullámú sugárzásnak a marketingszakemberek és egyes hatóságok által feltételezett „ártalmatlansága”, valamint a mikrohullámú sugárzás internetes virtuális folytatása által feltételezett „ártalmatlansága” ellenére a trollok, mindazonáltal a 9. táblázatban felsorolt ​​lakossági kategóriákban a mikrohullámú sugárzás maximális intenzitása egy nagyságrenddel kisebb, mint az összes többi esetében, és 10 μW/cm 2. Abban az esetben, ha az antennák körbetekintési vagy pásztázó üzemmódban működnek (azaz időszakosan besugároznak egy személyt) - 100 μW/cm 2 . Így a korábban MINDENKI számára kialakított norma ma már csak a terhes nőkre és a kiskorúakra vonatkozik. És mindenki más is így lesz. Hát ez érthető. Valóban, különben teljesen meg kellene változtatni a cellás kommunikáció, valamint az internet fogalmát és technológiáját.

Igaz, a propagandával tömött emberek azonnal tiltakozni fognak: miért – mondják – most nincs más kommunikációs technológia; Ne térjen vissza a vezetékes kommunikációs vonalakhoz. És ha belegondolsz, miért nem térsz vissza? Folytassuk azonban.

Jellemző az idézett SanPiN 3.10 bekezdése, amely kimondja: "Ha az RF EMR forrása ismeretlen, nincs információ a működési frekvenciák tartományáról és az üzemmódokról, az RF EMR intenzitás mérését nem végzik el."

Képzelje el, mi történne, ha a Btk.-ban hasonló rendelkezés szerepelne: „ha a bűncselekményt elkövető személy ismeretlen, és nincs információ arról, hogy milyen módon követte el a cselekményt, akkor nem indul büntetőeljárás, és nem ilyen személyt keresnek”? Nyilvánvaló, hogy ez a záradék jogilag rögzíti, hogy (a mikrohullámú sugárzás forrásának ismeretlensége esetén) az állampolgárok és más személyek nem fordulhatnak az egészségügyi és járványügyi állomáshoz, illetve más szervekhez a mikrohullámú sugárzás szintjének mérése céljából.

Valójában a sugárforrás jelenlétének bizonyítéka például egy cellatorony, internetszolgáltató stb. hivatalos címe. Ha a cím ismeretlen, valamint az sem, hogy pontosan MI a sugárforrás, akkor a 3.10. bekezdés szerinti mérése nem történik meg. Talán ez az oka annak, hogy az Iota cég segélyvonalának hívásakor az üzemeltetők nem adnak pontos tájékoztatást tornyaik elhelyezkedéséről. Úgy, hogy ha valami történik, akkor nincs okunk panaszra.

Továbbá, még ha valamilyen módon ismertté válik egy torony vagy más mikrohullámú sugárzási forrás címe, akkor is meg kell találni a működési frekvenciák tartományát, valamint az üzemmódokat. Mindez csak speciális műszerek - mérőeszközök - használatával lehetséges, amelyeknek át kell menniük állapotellenőrzés. Az ilyen eszközök listája a SanPiN-ben található (lásd a 10. táblázatot).

10. táblázat



Az ilyen eszközök ára 1000...2000 dollártól kezdődik. Nyilvánvaló, hogy nem mindenki engedheti meg magának, hogy ilyen készüléket vásároljon, sőt rendszeresen ellenőriztesse is az illetékes kormányzati szervvel. A különféle mikrohullámú térjelzők leolvasását, például a Chip and Dip üzletben megvásárolhatóakat (lásd lent), természetesen nem vesszük figyelembe. Erről rengeteg információ található az interneten.

Mi történhet egy állampolgárral (vagy egy szervezet vezetőjével? jogalany), aki a mikrohullámú forrásra és a frekvenciatartományra vonatkozó adatok hiányában a SanPiN 3.10. pontja ellenére kitart, és kitartóan meggyőzi az Egészségügyi és Járványügyi Állomást a mérések elvégzésének szükségességéről? Persze jöhetnek megmérni. Vagy elmondják az orvosoknak. Azért, hogy az ő szempontjukból megfelelő intézkedéseket hozzanak. Egyébként az interneten is sokat írtak erről. Mellesleg, talán valaki (köztük néhány ügyfelünk is) hasznosnak találhatja ezt, hogy végül kikerüljön a hadseregből. De mindenesetre látszólag kevés kellemes következménye van. Másrészt láthatóan jó néhány ember van, akinek valódi mentális problémái vannak, és ezeket a problémákat a mikrohullámú sugárzásnak tulajdonítják, néhány internetes üzenetből ítélve. Az ilyenek elleni védelem érdekében a 3.10. pont bekerülhetett a SanPiN-be. Szóval mindenki azt gondol, amit gondol. Nos, az eredményekről folytatjuk a beszélgetést tudományos publikációk.

Vannak természetesen (a nyilvánosság előtt) a modernebb eredmények is tudományos kutatás. Mondjuk egy csoportos vizsgálat eredményeit ukrán kutatók (2010-ig nyúlnak vissza), akik rögzítették a tényt jelentős a 40 μW/cm 2 -nél nagyobb fluxussűrűségnél a mobiltelefonból és a WiMAX-ból származó mikrohullámú sugárzás emberi sejtekre gyakorolt ​​hatása. A kutatók a CHG indikátor növekedését bizonyították, ami a sejtek funkcionális aktivitásának csökkenését és a kromoszómák kromatinkondenzációja miatti mutációk valószínűségének növekedését jelzi.

Az alábbi kép az egyik első oldalának egy részének másolata tudományos publikációk, amely e tanulmány eredményeit tárgyalja. Ha valakit érdekel, megtalálja és letöltheti ezt a kiadványt az interneten, vagy közvetlenül kapcsolatba léphet a szerzőkkel.

Vannak mások is Tudományos kutatás, de ismételjük, itt nem tűztük ki célul, hogy még csak röviden is foglalkozzunk velük, mert ez a cikk egyáltalán nem úgy tesz, mintha tudományos publikációés inkább kedves tudományos tanács, nem több. Mellesleg, ha segítségre van szüksége készítmény tudományos publikáció, felveheti velünk a kapcsolatot.

Ezért be tudományos Nem kívánunk itt nem tudományos vitába bocsátkozni. A cikk csak azoknak szól, akik már értik, mi az, ami a mikrohullámú sugárzással kapcsolatban. Erőszakosan (vagy akár erőszakmentesen) meggyőzni valakit, egyet kell érteni, legalább komolytalan. Majd ha a polgárok elsöprő többsége hirtelen úgy dönt, és megérti, hogy az, amit néha használ (eszik stb.), mennyire káros... Megérti, mi lesz akkor. Az államnak pedig szigorítania kell a jogszabályokat és elnyomó intézkedéseket kell alkalmaznia (mint az USA-ban és Európában is). Egyetértek, miért van erre szükség? Sokkal könnyebb megengedni egy olyan helyzetet, amikor mindenki azt gondol, amit akar. A vélemények hírhedt „pluralizmusa” okkal adatott meg az embereknek. Nem is lenne rá szükség, és mindenki (vagy inkább, elnézést, szinte mindenki) ugyanazt a nyelvet beszélné, mint a távoli időkben.

Tehát cikkünkben nem az emberi szervezetre gyakorolt ​​​​káros hatásokról (mert ez a hatás nyilvánvaló), hanem arról, hogyan mérje meg a mikrohullámú sugárzás szintjét.

Mikrohullámú sugárzásmérő tervezése

Két út van. Az első, viszonylag egyszerű, egy gyári mérő vásárlása. Egy jó mérő ára azonban jelenleg (2014. szeptember) legalább 10...15 ezer rubel (vagy még több). Ha ez a legegyszerűbb mérő, mint az alábbi ábrán látható. Link az üzlet címéhez:

A mutató kétségtelenül kényelmes és kellemes megjelenésű. De sajnos az eladó cég fel sem sorolja a mikrohullámú sugárzás azon frekvenciatartományait, amelyeket képes mérni. Ezenkívül ismeretlen a mikrohullámú sugárzás minimális szintje, amelyet ez a mutató mérni tud (a használati utasítás szerint ez egyenlő 0-val. A nulla azonban rugalmas fogalom: 10 -10 μW/cm 2? Vagy legalább 10 - 2 mW/ cm 2?) Ezen túlmenően az ilyen készülékek utólag ellenőrizhetetlenül változtatják leolvasásukat. Végül, az 5 GHz-es mikrohullámú sugárzás méréséhez általában más árkategóriájú készülékre van szükség. Természetesen akkor lesz rá szükség, amikor a mérési eredményeket igazolni kell hivatalosan. Ezenkívül egy ilyen mérő skálája egy adott frekvenciatartományban általában arányos az általa mért teljesítménnyel. Ráadásul nem „papagájokban” méri a mikrohullámú frekvenciákat (mint egy házi készítésű), hanem mondjuk μW/cm 2 -ben.

Igaz, a gyári mérőknek van egy hátránya: nem mindegyiknek jó az érzékenysége, mivel veszélyesnek (vagy károsnak) tartott szintek mérésére tervezték. modern hivatalos orvoslás. Ezenkívül az „olcsó” mérőmodellek nem teszik lehetővé a sugárzás irányának meghatározását.

Ha valaki szeretne házilag mérőt készíteni, kérem, van egy nagyon olcsó építőkészlet (kész alkatrészeket és csak összeforrasztandó blokkokat tartalmaz) a Master Kit-től (további részletek a http:// oldalon találhatók www.masterkit.ru). A mikrohullámú sugárzás szintjét azonban csak két módban mutatja: „kevesebb a megengedettnél” és „több, mint megengedett” (utóbbi esetben a készülék testén lévő LED világít). Nyilvánvaló, hogy egy ilyen primitív jelzés aligha releváns.

Ezért a második módszer az, hogy saját készüléket készítsen, szerencsére ez nem olyan nehéz. Az egyetlen dolog, ami nehéz lehet, az a mikrohullámú dióda. Ez egy dióda, amely képes érzékelni (egyenirányítani) egy jelet ultra-nagy frekvencián. Moszkva és számos más város kivételével nem fog tudni ilyen diódát vásárolni az olyan üzletekben, mint az „Electronics” (persze szórakozásból kérdezze meg az eladókat, hogy van-e valami ötlete dióda ez általában... csak ne keverje össze a mikrohullámú sütőből származó magnetronnal). De csak rendelés leadásával tudod megvásárolni. Ráadásul nem minden elektronikai üzlet vállalja a végrehajtást. Tehát a legjobb, ha egy online áruházban rendel... vagy Moszkvába megy, például a Mitinsky rádiópiacra. Ezzel biztosan nem lesz probléma. A mérőhöz alkalmas legolcsóbb mikrohullámú dióda 20 rubeltől indulhat. (természetesen használt). De ez nem túl ijesztő: a szovjet gyártmányú mikrohullámú diódák (D405 típus) általában teljesen működőképesek még az élettartamuk lejárta miatti ártalmatlanításuk után is (beleértve a rádiópiacon történő akciós áron történő eladásukat is). ). Meg kell jegyezni, hogy korábban a védelmi termékek közé sorolták őket (ma már vannak modernebb és funkcionálisabb analógok); Jellemző tulajdonságuk, hogy bizonyos üzemórák után kezdik elveszíteni tulajdonságaikat, ezért időszakonként cserélni kell őket. Ezenkívül rendkívül nem kívánatos kézzel érinteni őket a fém alkatrészeken, ha az ember nincs földelve: az tény, hogy félnek a statikus elektromosságtól, és az ellenkező irányú áttörési feszültség csak 15...30 V.

Egy új dióda ára 100 rubeltől lesz. Jobb, ha több különböző módosítást vásárol, és kipróbálja, melyik a legjobb az Ön készülékéhez.

Tehát megszületett a döntés - egy házi készítésű mikrohullámú mérő forrasztására. Milyen séma szerint? Tegyük fel azonnal, hogy sok hasonló rendszer van az interneten. Sajnos MINDEN (amit véletlenül láttunk) nem alkalmas azért, mert csak modulált jelzi változtatások a vett mikrohullámú jel amplitúdója (ezt néha ütemnek is nevezik), nem pedig magát az amplitúdót. Vagy egyszerűen nem működnek.

Állandó amplitúdójú jelábra

Változó amplitúdójú jel grafikonja

Ráadásul ezek a tervek gyakran nem túl egyszerűek. Ezért érdemes megpróbálni elkészíteni az alábbiakban javasolt sémát. Mondjuk rögtön, hogy nem úgy tesz, mintha gazdaságos és kompakt lenne. Az elektronikai szakemberek persze kiröhögnek a primitívségén és a fejlettség hiányán... De ennek egyetlen nagy előnye van: működik és méri a mikrohullámú jel amplitúdóját, és nem csak a modulált változását. Pontosabban, lehetővé teszi a feszültség amplitúdójának relatív nagyságának mérését a vett mikrohullámú jelben.

Milyen ez a rokon? Más szóval, a készülék „papagájokban” végez méréseket; Természetesen itt nehéz Volt per méterről vagy μW/cm2-ről beszélni (bár alább teszünk egy kísérletet). De a kalibrálás az aktuális sugárzási szint hozzávetőleges, MINIMÁLIS becslése. Bár a minimum ismerete nem rossz. Ha mondjuk ez a „minimum” 100...1000 μW/cm 2, akkor van értelme felfogni a dolgok jelenlegi állását. Bár, ismételjük, bizonyos értelemben könnyebb nem gondolni semmire, és így élni. Valójában egy adott személy egészségével és jólétével kapcsolatos problémák az ő, és alapvetően csak az ő problémái. Igaz, ott vannak még a rokonai.

Az a tény, hogy ennek az eszköznek a skálájának pontos kalibrálásához szüksége lesz egy megfelelő frekvenciájú kalibrált generátorra. Sőt, nem egy frekvencián kell kalibrálnia, hanem legalább többen (5...10). Ha nincs kéznél generátor, vagy nem szeretnél munkaigényes kalibrálási folyamatban részt venni, akkor jelzésként, amely alapján méréseket végeznek, teljesen lehetséges például egy működő mobiltelefon használata. jelátviteli módban (hang vagy adat az interneten keresztül); rádió Internet modem (például Beeline vagy Iota), működik Wi-Fi hálózat. Miután kísérletezett ezekkel a mikrohullámú sugárzási forrásokkal, könnyebb lesz másokkal együtt navigálnia, például elhaladva (elvezetve) egy cella torony mellett, vagy valahol egy fémborítású helyen (egyébként csendes horror néha! !) szupermarket, metró stb. .d. Majd varázskoporsóként feltárulnak előtted az okok, miért volt „hirtelen”, „egyből”, erővesztés jelentkezett, émelyegni kezdett, fáj a fejed (ezek részben , mikrohullámú besugárzás jelei) stb. Erről azonban egy kicsit később beszélünk.

Figyelem: Forrasztáskor ne vigye túl KÖZEL ezt a készüléket működő mikrohullámú sütőhöz. Mert fennáll a mikrohullámú dióda tönkremenetele veszélye. Legalább vigyázzon a készülékre (úgy tűnik, ha az ember nem törődik az egészségével, akkor OLCSÓBBAN kerül, mint a készülék), hiszen időt és energiát fordított a létrehozására.

Tehát először nézzük meg az elektromos kapcsolási rajzot.

Szerkezetileg az áramkör több blokkból áll: mérőfejből, tápegységekből, mikroampermérő blokkból, valamint egy táblából, ahol az áramkör többi része össze van szerelve.

A mérőfej egy félhullámú vibrátor, amelyhez D405 diódák vannak csatlakoztatva (vagy hasonló karakterisztikájú, ultramagas frekvenciájú áramok egyenirányítását lehetővé tevő), D7 diódák és 1000 pF-os kondenzátor. Mindez egy vastag, nem fóliás PCB-ből készült lemezre van felszerelve.

A félhullámú vibrátor két darab 1 cm átmérőjű, nem mágneses fémből (például alumíniumból) készült, 7 cm hosszú csődarab. A csövek végei közötti minimális távolság körülbelül 1 cm vagy még ennél is kevesebb (tehát hogy a VD7 dióda elfér közöttük). Legvégső esetben, ha nincsenek ilyen csövek, egy darab vastag (2 mm-es) rézhuzallal is meg lehet oldani. A csövek végei közötti maximális távolság 15 cm, ami 1 GHz-es frekvencia esetén a hullámhossz felének felel meg. Vegye figyelembe, hogy minél nagyobb a csövek (vagy vezetékek) átmérője, annál kevésbé érintik a félhullámú vibrátort a vett jel nagyságának torzulásai a frekvenciájának változásaitól függően.

A félhullámú vibrátor kialakítása bármilyen lehet. Csak az a fontos, hogy a diódaelektródák és a csövek végei között jó elektromos érintkezés legyen. Ebből a célból az egymáshoz legközelebb eső végeket célszerű nem mágneses fémdugóval bedugni, ezekbe 8 mm, illetve 3 mm átmérőjű furatokat fúrva 3...5 mm mélységig. Sárgaréz hegyeket használtunk. De például a csövek végeit 1 cm mélységig megtöltheti ónnal vagy forraszanyaggal, majd a megadott méretű lyukakat fúrja bele.

Készülékünk D405 márkájú VD7 diódát használt. Műszaki adatok, valamint ennek a diódának a méreteit az alábbiakban adjuk meg (a „Félvezető eszközök. Nagyfrekvenciás diódák, impulzusdiódák, optoelektronikai eszközök: Directory / A.B. Gitsevich, A.A. Zaitsev, V.V. Mokryakov, etc.; Ed. A.V. Golomedova.-M.: Rádió és Hírközlés, 1988.-592 pp.”

Ennek a diódának a működési frekvenciája 3,2 cm-es hullámhossznak felel meg (9,4 GHz-es frekvencia). Azonban többre is működhet alacsony frekvenciák: A 400 MHz-es frekvencián (75 cm-es hullámhosszon) végzett mérések legalábbis megmutatták a működőképességét. Ennek a diódának a felső határfrekvenciája körülbelül 10 GHz (3 cm hosszú). Így egy ezt a diódát használó mérőműszer 400 MHz ... 10 GHz frekvenciájú mikrohullámú sugárzást képes mérni, amely lefedi a tartományt többség Jelenleg használt, mikrohullámú sütőt kibocsátó háztartási eszközök: Mobiltelefonok, blue-tooth, mikrohullámú sütők, Wi-Fi, routerek, modemek stb. Vannak persze új szabványú telefonok (20...50 GHz). Az ilyen frekvenciájú sugárzás méréséhez azonban egyrészt más (nagyobb frekvenciájú) diódára, másrészt a mérőfej más kialakítására van szükség (nem félhullámú vibrátor formájában).

A dióda elég kis teljesítményű, így nagy mikrohullámú sugárzási fluxusokat nem lehet vele mérni, különben egyszerűen kiég. Ezért legyen körültekintőbb a mikrohullámú sütők, valamint más erős mikrohullámú sugárforrások sugárzásának mérésénél! Aki önszántából rendeltetésszerűen használja a mikrohullámú sütőt, az természetesen nem törődik az egészségével (ez az ő döntésük). De legalább tanácsos vigyázni a készülékre.

A mérőfejben található két, hátul egymás mellé kapcsolt D7-dióda a VD7-diódát hivatott megvédeni a statikus elektromosság okozta meghibásodástól (például, ha véletlenül egy félhullámú vibrátor csöveit érinti meg egy felvillanyozott kézzel). Természetesen ezek a diódák nem bírják a nagy teljesítményű statikus kisülést, ehhez vagy erősebb diódákra van szükség, vagy kiegészítő védelmet kell építeni. Otthoni, utcán, munkahelyen, szomszédokkal és barátokkal végzett méréseknél azonban erre nem volt szükség. A lényeg az, hogy óvatosan használja a készüléket.

A D7 diódák áram-feszültség jellemzőit az alábbiakban adjuk meg

A D7 diódák áram-feszültség karakterisztikája

Látható, hogy a paraméterek kis szórása van mintáról mintára. Így a különböző D7 diódák áram-feszültség karakterisztikája egymáshoz képest 0,04 V-tal eltolódik.

Így 0,5 V-ot meg nem haladó feszültségnél mindkét dióda kinyílik, ami biztosítja a VD7 diódát a kritikus (30 V) értékű fordított feszültség hatásától (amikor mikrohullámú hullámnak van kitéve nem vezető időszakban), például a statikus elektromosság okozza. Másrészt, még 10 mV bemeneti feszültség mellett is, a D7 diódákon keresztüli áramértékek nem haladják meg a néhány tized mikroampert. A pontosabb következtetés érdekében a diódák áram-feszültség karakterisztikáját 0...0,35 V tartományban interpoláltuk. Kiderült, hogy 10 mV bemeneti feszültség esetén a diódán áthaladó áram nem haladja meg a 7,4 nA-t. Ebben az esetben a mérő bemeneti ellenállása (figyelembe véve, hogy a kiválasztott műveleti előerősítő bemeneti ellenállása meghaladja az 50 MOhm-ot) legalább 10 * 10 -3 / (2 * 7,4 * 10 -9) = 576676 Ohm = 0,57 MOhm. A felhasznált D7 diódák interpolációs trendjeinek pontossági foka (a determinációs együttható értékeként definiálva) kisebb volt, mint R 2 =0,9995, azaz. majdnem egyenlő 100%-kal.

A mérőfej tehát egy antenna (félhullámvibrátor) és egy műveleti előerősítőn készült amplitúdódetektor. Ráadásul a vibrátort nagy ellenállású terhelés terheli, amely jelentősen meghaladja a hullámimpedanciáját 300 MHz... 3 GHz-es frekvenciákon. Úgy tűnik, ahogy az antennák elméletéből következik, ez téves, mert az antenna (vibrátor) által vett teljesítménynek meg kell egyeznie a terhelésben elnyelt teljesítménnyel. Ez az állapot azonban jó, ha a feladat a sugárvevő maximális hatékonyságának elérése. Feladatunk, hogy lehetőség szerint megvalósítsuk a mérőállások függetlenségét az antenna (pontosabban a mérőfej) hullámimpedanciájának értékétől. A hatékonyság pedig elvileg teljesen lényegtelen. Pontosan ez biztosított, ha

A mérőfej öblítése<< R нагрузки .

A terhelésünk természetesen egy erősítő (a K140UD13 mikroáramkör bemeneti impedanciája és két párhuzamosan kapcsolt D7-es dióda). Ezért az első erősítő fokozat egy műveleti erősítőn történik, és nem mondjuk egy bipoláris tranzisztoron.

A C1 kondenzátort úgy tervezték, hogy elektromos töltést halmozzon fel, amikor mikrohullámú hullámoknak van kitéve egy nem vezető időszakban (ez az érzékelő eszközök gyakori eleme).

Így a mérőfej kimenetén egyenirányított (viszonylag állandó) feszültséget kapunk.

Az áramforrás két készlet két Krona akkumulátorból áll, mindegyik 9 V feszültséggel (így mindegyik készlet 18 V feszültséget biztosít).

Természetesen meg lehetne boldogulni egy készlet két akkumulátorral a tápellátás leválasztásával (vagy akár egy akkumulátorral is, ha egy feszültségnövelő áramkört építenek be), de őszintén szólva nem volt kedv a spóroláshoz; a fő cél a gyors létrehozás volt dolgozó tervezés. Ha a készülék nincs bekapcsolva az állandó működéshez, akkor az alkalmi mérések során nem merül fel olyan gyakran az elemek cseréjének szükségessége. A folyamatos működéshez célszerű álló áramforrást használni.

A mikroampermérő blokk magából a mikroampermérőből és egy R9 változó ellenállásból áll. Amire szükség van, az mikroampermérő 10 µA-ig terjedő skálával, egy milliampert sem. Bár természetesen használhat mikroampermérőket más skálákkal, például 100 μA-ig. Ha nem talál ilyet a város egyik boltjában, akkor ismét megrendelheti online, vagy elmegy egy moszkvai rádióüzletbe.

Akár 100 μA skálájú mikroampermérő áram-feszültség karakterisztikája

Végül nézzük a fő blokkot. Ez egy nyomtatott áramkör, amelyre a mérőfejből nyert tényleges egyenfeszültségű erősítő áramkört szerelik fel. Az erősítő alapja a K140UD13-on megvalósított precíziós DC műveleti erősítő. Ez a mikroáramkör egy MDM típusú egyenáramú műveleti előerősítő. Ez a műveleti erősítő elmondható, hogy elkülönül „kollégáinak” túlnyomó többségétől. Ezek célja általában, hogy fokozza változó feszültséget, és a K140UD13 erősíti állandó (vagy lassan változó változó). A mikroáramkör érintkezőinek számozása az alábbiakban látható:

A K140UD13 tűk célja:
1 - általános;
2 - invertáló bemenet;
3 - nem invertáló bemenet;
4 - tápfeszültség -Fel;
5 - demodulátor;
6 - kilépés;
7 - tápfeszültség +Fel;
8 - generátor kapacitása;


A K140UD13-at +15 V, illetve -15 V feszültséggel kell táplálni.

Ez a műveleti erősítő lehetővé teszi a 0,5 nA-es áramok mérését, azaz. az érzékenység nagyon magas.
Külföldi megfelelője: µ A727M

Ez a mikroáramkör pontosan ezt a tulajdonságát javítja állandó, de nem változóáramerősség, és lehetővé teszi az érték mérését feszültség amplitúdója Mikrohullámú sugárzás (egyenirányítva a mérőfej detektorral), szemben a modulálttal feszültség amplitúdó változásai, akárcsak az interneten megtalálható tervek. De vannak esetek, amikor meg kell mérni a mikrohullámú sugárzás modulálatlan hátterét. Így az információ vételének és továbbításának módjában bekapcsolt mobiltelefon mikrohullámú sugárzása, de ilyen átvitel hiányában (például ha csend volt a beszélgetés során) sokkal kevésbé lesz modulálva, mintha jelen lenne.

A műveleti erősítő 2. és 3. bemenetén ugyanazok a D7 diódák találhatók, egymás hátulján. Céljuk pontosan megegyezik a VD5, VD6 diódákkal. Miért a duplikáció?

A helyzet az, hogy a mérőfej rugalmas vezetéken keresztül csatlakozik a készülékhez (erre a célra csavart telefonvezetéket használtunk - spirál formájában). Így előfordulhat, hogy a mérési folyamat során, amikor a mérőfejet a kísérletező keze mozgatja (a maximális érzékenységének irányának meghatározása érdekében), a hajlékony huzal meghajlik. Fokozatosan elszakadhat a készüléktől. Ezen a ponton (mivel a huzalhüvely elektromosan nem vezető anyagból készült) nagy a valószínűsége annak, hogy a statikus elektromosság kisül a rugalmas vezeték és a műveleti erősítő egyik bemenete között, ami annak meghibásodásához vezet. Végül is a K140UD13 áramkör bemeneti közös módú feszültségének maximális értéke mindössze 1 V. Hasonló esetet figyeltünk meg, ezért úgy döntöttünk, hogy egy második védelmet készítenek - közvetlenül a készülék testén belül, két visszaforrasztva hátsó diódák közelebb a műveleti erősítő 2., 3. érintkezőihez.

Egyébként önmagában ez a védelem nélkül (a mérőfejben lévő nélkül) sem lehet: ha a rugalmas vezeték elszakad, a statikus elektromosság károsíthatja a VD7 diódát. Ezért kettős védelemre van szükség. Ha nem készít védelmet, akkor a legérdekesebb az, hogy a mérőelemek nem teljesen meghibásodhatnak, hanem csak részben. Azok. Ott valahogy még működni fog a séma. Ugyanakkor, ha továbbra is rendeltetésszerűen használja a mikrohullámú mérőt, egészen fantasztikus eredményeket érhet el. A vicces az, hogy az interneten manapság elérhető legtöbb séma esetében egyáltalán nincs védelem.

A VT1, VT2 tranzisztorok referencia feszültségforrásokat tartalmaznak, amelyek +15 V, illetve –15 V-ot biztosítanak a kimeneteken. Természetesen meg lehetett boldogulni két mikroáramkörrel, például importált L7815, L7915 vagy orosz KR1158EN15 feszültségstabilizátorokkal, de ismételjük, az áramkört gyorsan összeállították. Természetesen kész stabilizátorok használatával az áramkör SOKKAL gazdaságosabb lenne, mint a tényleges változata.

A referencia feszültségforrások R2, R4 ellenállásait arra az esetre tervezték, ha a VD1, VD2 zener-diódák hirtelen kiégnek, így a referenciafeszültség nem haladja meg a 16,5 V-ot, és a DD1 műveleti erősítő nem hibásodik meg. Az R5, R6 ellenállások is erre szolgálnak. Ezen ellenállások értékeinek megválasztását kísérleti úton végeztük, a VD1, VD2 zener-diódák meghibásodásának szimulálásával.

A C2, C3, R5 alkatrészeket a tipikus csatlakozási séma szerint kell kiválasztani. A C2, C3 kondenzátorok szükségesek a műveleti erősítő üzemmódjának beállításához. Az R5 ellenállás szükséges a műveleti erősítő terhelésében bekövetkező rövidzárlat esetén: a tény az, hogy a minimális megengedett terhelési ellenállás 20 kOhm.

A C4 kondenzátort úgy tervezték, hogy kisimítsa a műveleti erősítő kimenetéről táplált felerősített feszültség hullámzásait (hogy a mikroampermérő tűje ne ránduljon meg gyorsan változó jel mérésekor). Bár ez a kondenzátor opcionális. Ennek megfelelően az R8 ellenállást úgy tervezték, hogy ez a kondenzátor kisüljön, ha a mikroampermérő egység lecsatlakozik a fő egységről (tábláról), például a csatlakozó vezetékek szakadása vagy rossz érintkezése következtében a későbbi pontatlan javítások során vagy a készülék frissítései.

Végül a mikroampermérő egység magából a mikroampermérőből és egy változtatható ellenállásból áll, amely szabályozza a mikroampermérő feszültségellátását. Az áram-feszültség karakterisztikát (például egy 0...100 μA skálájú mikroampermérőt veszünk) fent adjuk meg.

Az áramkör összeszerelésével kapcsolatban. Mivel az áramkör a VD7-et, a műveleti erősítőt és a mikroampermérőt leszámítva nem tartalmaz különösebben kritikus alkatrészeket, összeszerelése a szokásos módon történik. A VD7 mikrohullámú diódával kapcsolatban meg kell jegyezni, hogy NAGYON óvatosan kell csatlakoztatni a mérőfejhez. Először is NEM lehet forrasztani. Csak megbízható szoros érintkezést kell biztosítania a vibrátorcsövekkel.

Másodszor, ha vibrátorba szereljük, tanácsos az elektródáit rövidre zárni, például egy fóliával. És csak akkor távolítsa el, ha a dióda teljesen be van szerelve a vibrátorcsövek dugóiba fúrt lyukakba.

Ha ÚJ D405 diódát (vagy hasonlót) vásárol, az egy speciális ólomkapszulában lesz, mint egy kis kaliberű puska töltényhüvelyében. Ez azért történik, hogy a szállítás és tárolás során (a kiskereskedelmi láncban) a dióda ne hibásodjon meg statikus elektromosság vagy erős elektromágneses sugárzás következtében. Ezért a mérőfejbe történő beszereléskor nagyon óvatosan távolítsa el a diódát a kapszulából, minimalizálva az elektródákkal való érintkezést. A legjobb, ha kissé eltávolítja, és a maradék elektródát a hüvelyben nyomja, majd azonnal fóliával kösse össze a hüvelyből kilépő elektródát magával a hüvely testével. Remélem, egyértelmű, hogy először a fóliát kell felvinni a hüvelyre, majd az elektródára. Miután eltávolította a diódát a hüvelyből, azonnal csatlakoztassa (rövidre zárja) az elektródákat fóliával, és csak ezután szerelje fel. Ezek az óvintézkedések segítenek megőrizni. Egyébként ugyanez vonatkozik a műveleti erősítőre is. A nyomtatott áramköri lapba forrasztás előtt célszerű az összes elektródát rövidre zárni, amit például úgy is megtehetünk, hogy az elektródák közé egy gyűrött fóliadarabot nyomunk; A fóliát csak akkor tanácsos eltávolítani, ha a nyomtatott áramköri lapon lévő áramkör teljesen készen áll.

És tovább. Mikrohullámú diódák semmi esetre sem ez tiltott meghibásodást ellenőrizni teszterrel, ohmmérővel stb! Mert egy ilyen „ellenőrzés” nagy valószínűséggel a dióda névleges teljesítményjellemzőinek elvesztéséhez vezet. Sőt, a legérdekesebb az, hogy nem veszítheti el teljes funkcionalitását. A mikrohullámú jelek észlelése azonban sokkal rosszabb lesz (az érzékenység egy nagyságrenddel csökkenhet). Gondolatban természetesen figyelembe kell vennie ennek a diódának az áram-feszültség karakterisztikáját, hogy megbizonyosodjon arról, hogy teljesen működőképes.

A további óvintézkedések érdekében a mérőfej összeszerelése során célszerű földelni magát úgy, hogy a lábán és a karján speciális földelő karkötőt visel, a GOST ajánlása szerint az elektronikus eszközök összeszerelésekor.

Megjegyzések. Mint már említettük, a K140UD13 áramkör az előerősítő. Erősítési tényezője az útlevél szerint nem kevesebb, mint 10, de semmi esetre sem 100 vagy 1000. Ezért nem lehet számítani a mikrohullámú mérőfejtől kapott jel jelentős növekedésére. Emiatt egyébként mikroampermérőt használtak. Ha gyengébb jeleket kell mérni, akkor legalább még egy erősítő fokozatot kell hozzáadni az áramkörhöz. Mivel a K140UD13 MDM (modulátor-demodulátor) technológiával készült, a kimenete már nem állandó, hanem váltakozó feszültségű. Kisimítására C4-R7 szűrőt adunk. Ezért az egyenáramú erősítő kimeneti feszültségének erősítéséhez bármilyen más műveleti erősítőt használhat. Tehát, ha eltávolítja az R7 ellenállást az áramkörből, és helyette csatlakoztatja a következő műveleti erősítő bemenetét (például K140UD7), jelentős nyereséget kaphat. Az így megvalósított készülék - mikrohullámú mérő - nemcsak a mikrohullámú sugárzás (veszélyes) szintjének közvetlen mérésére használható, hanem gyenge mikrohullámú források felkutatására is 400 MHz... 10 GHz tartományban. Igaz, a mikrohullámú sugárzás 4...5 GHz feletti frekvenciájú méréséhez rövidebb hullámú vibrátort kell használni. Hatékonyabb természetesen kis méretű szélessávú irányított mikrohullámú antennát, például log-periodikus antennát készíteni. Ha megjön a vágy, írunk róla.

A nagy nyereség lehetővé teszi például a rejtett mikrohullámú készülékek (telefonok, modemek, különféle, valós időben működő lehallgató eszközök) észlelését. Ha a mérőt ilyen célokra kívánják használni, módosítani kell. Először is, ilyen célokra egy erősen irányított antenna a legmegfelelőbb, például egy kürt vagy log-periodikus (hogy a mikrohullámú sugárforrás iránya meghatározható legyen). Másodszor, célszerű lenne az erősítő kimeneti jelének logaritmusát venni. Ha ez nem történik meg, akkor ha a gyenge jel forrásának keresése közben valaki a közelben mobiltelefonon hív, a mikroampermérő meghibásodhat (kiéghet).

Tájékoztatásul bemutatjuk a vizsgált készülék (mikrohullámmérő) áram-feszültség karakterisztikáját.

A függést a K140UD13 műveleti erősítő bemenetére 2,5...10 mV tartományban állandó feszültséggel és mikroampermérő leolvasásával szüntették meg. Kellő pontosságú voltmérő hiányában (MASTECH T M266F teherbilincseket alkalmaztak) nem lehetett 2...2,5 mV-nál kisebb bemeneti feszültséget mérni, így a mérő áram-feszültség karakterisztikája. nem vették alacsonyabb bemeneti feszültségeken.

Látható, hogy a 0...3 mV tartományban furcsa módon kissé nemlineáris (bár ez lehet szisztematikus mérési hiba eredménye, mert ezek a teherbilincsek természetesen nem tartoznak a kategóriába professzionális eszközök). Egy bizonyos mérési hiba (ennek értéke nem tükröződik a grafikonon) hatása is érzékelhető, ami a mért pontok egyenestől való eltérését (trend) okozta a lineáris tartományban (3...10 mV).

Mikrohullámú sugárzásmérő kalibrálása

El lehet végezni ennek a mérőműszernek legalább hozzávetőleges kalibrálását? Az antennára eső mikrohullámú energiaáram sűrűségét a következőképpen számítjuk ki:

W - mikrohullámú sugárzási fluxusteljesítmény, W/m 2,
E – elektromos térerősség a vibrátornál,
U in – feszültség a vibrátor túlsó végei (hossza) között, V,
L eff az effektív hossz, amely a mérő vevőantennájának geometriájától és a vételi frekvenciától függ, m. Körülbelül egyenlőnek vesszük a vibrátor hosszával, azaz. 160 mm (0,16 m).

Ez a képlet olyan veszteségmentes antennához alkalmas, amely tökéletesen vezető földre van elhelyezve, és az összes vett áramot a terhelésre (vevőre) szállítja. Azonban, mint már említettük, esetünkben a terhelésnek biztosított teljesítmény minimális (mivel a hatásfok nagyon alacsony). Következésképpen a mikrohullámú sugárzási fluxussűrűség, amelyet a mérő mikroamperméter leolvasásából határoztak meg, és ezzel a képlettel μW/cm 2 -re újraszámították, kisebb lesz a ténylegesnél. Ráadásul a félhullámú vibrátor valós kialakítása nem nevezhető ideális antennának, mert a valódi kivitel rosszabbul veszi a jelet (azaz a valódi antenna hatásfoka 100% alatti). Így ezzel a képlettel minimális becslést kapunk a mérőfejre eső mikrohullámú áramlás teljesítményére.
A mérőállások bemeneti feszültségtől való függésének függvénye (a függőségi grafikonból meghatározva, lásd az ábrát):

I és =0,9023U bemenet + 0,4135

I és – áram (a mérő mikroampermérője szerint), µA,
U in – bemeneti feszültség az erősítő bemenetén, mV

Ennélfogva

U bemenet =(I és -0,4135)/0,9023

A számítási eredmények a következők voltak (lásd 11. táblázat).

11. táblázat

A mérőskálán mért értékek hozzávetőleges megfelelése (mikroamperben) a sugárzási teljesítmény értékeinek μW/cm 2 -ben

U bemenet, mV (referenciaként) 0,65 1,76 2,87 3,97 5,08 6,19 7,30 8,41 9,52 10,62
Mérőállás, µA 1 2 3 4 5 6 7 8 9 10
W, µW/cm2 4,4 32,0 85,1 163,7 267,7 397,2 552,1 732,5 938,3 1169,6

Így a műszertű akár 1...2 osztásos (mikroamperes) eltérése már veszélyes szintű mikrohullámú sugárzást jelez. Ha a tű a teljes skálára tér el (azaz a készülék skálán kívül van), akkor a sugárzási szint mindenképpen NAGYON veszélyes (meghaladja az 1000 µW/cm2-t). Ezen a szinten tartózkodni csak 15-20 percig szabad. Egyébként még a modern higiéniai szabványoknak (a szovjetekről nem is beszélve) megfelelően a mikrohullámú sugárzás szintje olyan helyen, ahol emberek tartózkodnak, még rövid ideig sem haladhatja meg a megadott (határ)értéket.

Mikrohullámú sugárzás mérések eredményei

Figyelem! Az alábbi információk gondolati alapúak, és semmiképpen sem hivatalosak és/vagy dokumentum jellegűek. Ez az információ teljesen bizonyítatlan! Ezen információk alapján nem vonható le következtetés a mikrohullámú sugárzás hátterére vonatkozóan! A hivatalos információk megszerzése érdekében az érdeklődők az Egészségügyi és Járványügyi Állomáshoz forduljanak. Speciális, állami tanúsításon és hitelesítésen átesett készülékekkel rendelkezik - mikrohullámú mérőórák, és csak az ilyen készülékek leolvasását vehetik komolyan az illetékes kormányzati szervek.

Most nézzük meg a talán legérdekesebb dolgot - az eszköz használatának eredményeit. A mérések 2010-2012-ben történtek. Az adatokat nem μW/cm 2 -ben, hanem mikroamperben (μA) kell megadni a mérőskálán.

Készülékek. Az alább felsorolt ​​eszközök mindegyike engedélyezve volt az adatok (vagy beszélgetések) fogadására és továbbítására. A Nokia GSM mobiltelefon sugárzási szintje 20-30 cm távolságban mérve 1...3...5 µA. Vegye figyelembe, hogy a jel nagysága jelentősen ingadozik; betárcsázós módban maximális. Az Iota Internet modem megközelítőleg azonos szintű (de valamivel magasabb) sugárzást ad; egy Hyndai Curitel CDMA 450 telefon esetében a sugárzás 1,5...2 µA (mivel alacsonyabb a működési frekvenciája és ennek megfelelően nagyobb a sugárzási teljesítménye). A városon kívül 7...8 µA jelet is észleltek. A modernebb telefonok valamivel alacsonyabb szintet adnak. De nem sokkal kisebb.

Egyébként, amikor egy adó-vevő üzemmódban működő telefont a mérőfej közelébe viszünk, időszakonként 5 µA vagy annál nagyobb jelet figyelünk meg, néha elérve a 10 µA-t. Míg 40...50 cm távolságban a mért jel szintje jelentősen csökken, és nem haladja meg a 0,2...0,4 µA értéket (kivéve persze, ha bekapcsolja a telefont valahol információ fogadására/továbbítására távol a cellatornyok kommunikációjától). Úgy tűnik, a mikrohullámú sugárzás szintje a közeli zónában nem a távolság négyzetével arányosan csökken, hanem gyorsabban. Ezért azoknak, akik nem tudnak lemondani mobiltelefonjukról, az a megoldás, hogy az úgynevezett kihangosítót használják. A mérések azt mutatták, hogy a kihangosító vezetéken keresztül nem jut át ​​sugárzás. Ennek a vezetéknek a jelenléte nem befolyásolja a mikrohullámú sugárzásmérő leolvasását. A kihangosított fülhallgatóval a mérőfej közelében végzett mérések eredményei megegyeznek a kihangosító nélküli mérések eredményeivel. Ezért a különféle trollok ("rádiómérnökök" és más marketingesek) általános internetes érvei, amelyek szerint a kihangosító vezetékek, valamint a telefonhálózat képesek mikrohullámú jelet továbbítani, nem igazak, és pletykák. Ennek oka az lehet, hogy ezek a vezetékek nagyon vékonyak (olyan vékonyak, hogy néha még a forrasztás is nehézkes), ami miatt nagy ohmos ellenállásuk van. Ezenkívül a mikrohullámú sugárzási jel továbbításához először is először elfogad, azaz A kihangosító vezetéknek antennaként kell működnie. Az általa készített antenna azonban nem fontos. Mert kis vastagsága mellett nagy a hossza (több hullámhosszt meghaladó mikrohullámú sugárzást a mobiltelefonból). Ezenkívül egy ilyen vezeték kissé megcsavarodik működés közben, ami jelentős induktivitását okozza, amely nyilvánvalóan elegendő ahhoz, hogy jelentősen csökkentse a kapott mikrohullámú jel szintjét. Másodszor, az ilyen „antenna” által vett jelnek továbbra is képesnek kell lennie az (újra)sugárzásra. A kihangosító vezeték visszasugárzása az imént említett okok miatt még alacsonyabb lesz. Ezért a kihangosító használata véd a mobiltelefonból származó mikrohullámú sugárzás ellen. Összehasonlítva azzal a sugárzással, amelyet egy halálra ítélt ember feje tapasztal, aki mobiltelefonon beszél, szorosan a fejéhez nyomva, kihangosító használatakor annak (sugárzási) szintje 10-szeresére vagy többszörösére csökken - ez egy nagyságrendű. mikrohullámú mérő. Ha áttérünk a μW/cm 2 egységekre, akkor a teljesítményszint körülbelül 100-szorosára vagy még többre csökken. Szerintem ez elég jelentős.

Azt is pletykálják, hogy a mikrohullámú sugárzás továbbítására telefonvonalakat is lehet használni. Bár megjegyezzük, hogy az elektromos vezetékeken keresztül történő ilyen átvitel teljesen lehetséges, mert egy időben megfigyeltük, azonban csak EGY helyen, az egyik 2,5 mm 2 keresztmetszetű elektromos vezeték közelében, amely 2,2 magasságban található. m-re a padlótól, jelentős hossza ellenére. Ahol időszakosan A mikrohullámú sugárzás kis hátterét is észlelték a nappalikban, valamint az egyik számítógép-monitoron (régi modell - vákuumsugár típusú), miközben be volt kapcsolva. Aztán az ilyen jelek eltűntek (jó, néhány megfelelő intézkedés után). Nagy hossza ellenére az elektromos vezeték továbbra is vevőként – sugárzást kibocsátóként – működhet.

Az egyik ismerősöm lakásában (a legközelebbi mobiltelefon-toronytól 200 m-re található) az ő személyes kérésére végzett mérések általában vicces képet mutattak. A lakás helyenként 1...4 µA-es mikrohullámú sugárzással teli volt. Persze volt olyan is, ahol teljesen hiányzott. A tér egyes pontjain, mintha minden ok nélkül, a mikrohullámú hullámok antinódusai voltak. Furcsa módon az egyik az ágya környékén volt, a párnától 20...40 cm magasságban). Nyilvánvalóan ezt az interferencia és az álló mikrohullámú hullámok kialakulása okozza. Nos, lehet, hogy más okok is voltak, mert egy alkalmazott lakott a lakásban. Erről semmit nem tudunk, és az ismerőse – elmondása szerint – nem tudott róla.

A mikrohullámú sütő (a márkára sajnos nem emlékszünk) 5...6 µA átlagos mikrohullámú sugárzási szintet adott tőle további 3(!) m távolságra, és próbálkozáskor a jel tovább erősödött. közelebb kerülni (két okból nem akartam közelebb kerülni: nem volt vágy a besugárzásra, és aggodalomra ad okot a készülék miatt). Hamarosan újabb besugárzási lehetőséget biztosítottak a mikrohullámú sütő tulajdonosai számára. Valójában valakinek meg kell mozgatnia a gazdaságot azáltal, hogy mikrohullámú sütőt is vásárol. Hiszen minden orosz állampolgár által vásárolt mikrohullámú sütővel az adókat az állami költségvetésbe fizetik be(!), bért fizetnekárusok az üzletekben, sofőrök (akik szállítják ezeket a kályhákat), megkapják a pénzüket és a reklám fejlődik stb. És ha valaki már vásárolt mikrohullámú sütőt, akkor hagyja, hogy később használja. Hogyan másképp? Logikátlan dolog csak abból a célból szerezni dolgokat, hogy aztán gyorsan megszabaduljunk tőlük.

Amikor Ufa városában utazik. Ha mikrohullámú tornyokhoz közelítünk, a jelszint gyakran erősen megemelkedik, majd a toronytól 300-400 méter távolságra csökken (átlagosan a vizsgált tornyok esetében). Például az utcán. Bakalinskaya, amikor lefelé halad az utca felé. Mengyelejev balra kanyarodik. Így 300-400 méter lefutása során, amíg elhaladtunk ezen a kanyaron, a mikrohullámú sugárzás mértéke 7...8 µA volt, néha a készülék le is ment a skáláról (az R7 ellenállás maximális érzékenységre állítva) . Úgy tűnik, mint tudjuk, az Iota szolgáltató tornya valahol ott található. A Yota cég bármennyire is próbáltuk (szóban) tájékozódni a help desk kezelőitől, nem adott pontos tájékoztatást a tornyok elhelyezkedéséről. Nyilvánvalóan ez kereskedelmi, sőt államtitok. Igaz, a kérdés továbbra is fennáll: MIÉRT rejtegetni? Egyrészt a túlnyomó többséget egyáltalán nem érdekli ez az egész. Az emberek megszokták. A fejfájást és az erőnlétet sokkal könnyebben és hatékonyabban lehet tablettával kezelni, mint elkerülni a mikrohullámú sugárzás forrásait. A modern orvostudomány már, mondhatni, alátámasztotta ezt. Másrészt a Yota versenytársai (internetszolgáltatók, Beeline, MTS) láthatóan már nagyon jól tudják, hol találhatók a tornyai, már csak azért is, mert nemcsak mikrohullámú sugárzásmérőkkel, hanem spektrumelemzőkkel és rádiófrekvenciás szkennerekkel is rendelkeznek. Vagy ahogy néha megesik, valahol ott, a közeli toronyházak egyik felső lakásában, magánlakás leple alatt van egy internetszolgáltató ILLEGÁLIS irodája? Az interneten olyan információ található, hogy hasonló esetek fordulnak elő internetszolgáltatók és mobilszolgáltatók körében. Mindenesetre riasztó az ilyen titkolózás.
De vannak olyan tornyok is, amelyektől a jelszint csökkenése tovább nyúlik. A televízióközpontban például a Zaki-Validi utcában (a televízióközpont toronytól kb. 600 m-re) 6...10 µA szintet figyeltek meg.

Érdekes egyébként, hogy mi a helyzet a kerítésekkel. A fémek természetesen minden sugárzást visszavernek magukról. Az ilyen kerítések közelében néha érdekes eredményeket figyeltek meg fizikai szempontból. Így az interferencia hatására (látszólag) jelentősen megnőtt a mikrohullámú sugárzás szintje a kerítés fémrészei közelében.

A fasorompók, például a kerítések (látszólag mindennek ellenére) is néha hatékonyan tükrözik a mikrohullámú sugárzást. Bár elméletben különösebb csillapítás nélkül át kellett volna menniük. Mellettük a mikrohullámú sugárzás, amely például a legközelebbi mobiltelefon-toronyból kiáramlik, csúszni látszik, és valamelyest koncentrálódik, szintje emelkedik. A mikrohullámú sugárzás maximális szintje hozzávetőlegesen 15...50 cm (egy vagy több hullámhossz) felületi távolságban található. Egyébként 4...5 m magasságban a mikrohullámú sugárzás megközelítőleg 2...3-szor magasabb. Amit nyilván az okoz, hogy ilyen magasságban - a földfelszíntől mért 0,5...1,5 m-es magassághoz képest - jóval kisebb a felszívódása. Mert 4...5 m magasságban kevesebb az épületszerkezet, kevesebb a faág (egyébként a fák HATÉKONY gátat jelentenek, amely elnyeli és elvezeti a mikrohullámokat, csökkentve annak szintjét; nem cserjék, hanem – hangsúlyozzuk – pontosan magas, vastag törzsű fák), nincsenek autók, emberek stb. Ezért alaposan gondolja át, mielőtt kivág egy fát, még akkor is, ha az árnyékolja az ablakait. Talán ez a megmentőd a mikrohullámú sütőktől.

Az ufai szupermarketekben és üzletekben. Paradox módon a helyzet más. Valahol a mikrohullámú sugárzás szintje nem gyenge (3...4 µA folyamatosan), de valahol szinte nyugodt. Hogy pontosan hol, azt persze nem mondjuk meg. Mert olvasóink széles tömege számára úgy tűnik, ez nem használ. Valójában a városban MINDEN ember nem látogathat el MINDEN szupermarketet és üzletet, igaz?

Ha Chishmy városában (Baskír Köztársaság) utazik. Ott persze egy igazi PARADICSIK - Ufához képest (a falvakról nem is beszélve... bár...). Csak néhány helyet fedeztünk fel Chishmyben, és mindegyik körül a sugárzási teljesítmény nem olyan magas, mint Ufában. Maximum 4...5 µA szintet figyeltek meg.

Nos, befejezésül

Annak érdekében, hogy ne érjen véget a cikk a műszaki jellemzőkről és a mikroerősítőkről. Beszéljünk az életigenlőről, fényesről és pozitívról. Emlékezz N.A. versére. Nekrasov "Vasút?" A költő végül mégis egy örömteli, FÉNY oldalát mutatta, nem? Szóval van egy ismerős, egy nagyon jó ember. Valahogy elkezdtünk vele beszélgetni a mikrohullámú sugárzásról és annak a szervezetre gyakorolt ​​hatásáról. Így hát ez az ember életigenlő, „gyilkos” érvelést adott: „igen, ez hülyeség, a jelzőcsapatoknál szolgáltam a hadseregben. Tehát ott az egyik szerelő tévedéséből az egyiken rossz minőségű árnyékolást végeztek. kábel. Ennek eredményeként a laktanyában több mint , mint hat hónapig a mikrohullámú sugárzás szintje több mint százszorosan meghaladta a megengedett normát. És amint látja, semmi. Én például nem vagyok impotens ( Van két gyerekem), stb. Mire van szükségem ehhez a mikrohullámú sütőhöz és főleg egy telefonhoz". A tragédia az, hogy ez a férfi még csak 52 éves, és az utóbbi években a fokozatosan kialakuló csípőízületi nekrózis miatt nehezen járt, és a jövőben, ahogy az orvosok mondják, ez még rosszabb lesz; és a gerinc egyértelműen nincs rendben. Kibírom, mondja, nyugdíjig valahogy, 3 év van hátra... Aztán levágják a lábát, behelyeznek egy titán protézist, és visszavarrják. Szóval nincsenek reménytelen helyzetek!

És akkor... valószínűleg, ez az egész véletlen egybeesés, úgy tűnik, igaza van. Valójában például, amikor egy embert lőttek le egy pisztollyal lőtt távolságból, majd ő (ember értelemben, nem pisztoly) elesik, akkor ezt is véletlennek lehet nevezni, szögből nézve. kívül: a pisztoly adta le a lövést, de egy ember esett el. Ezek teljesen más dolgok. Nos, a golyónak semmi köze hozzá. És tényleg, mi van ott, valami apró, szerencsétlen golyó, de hogyan okozhatja egy 10 000-szer nagyobb tömegű ember elesését? Na most, ha nem egy ember esett el, de pisztoly- akkor minden logikus és megmagyarázható lenne.

Igen, mielőtt elfelejtem, itt van egy másik példa egy ilyen véletlenre. Körülbelül 7-8 éve (a 2000-es évek elején) egy 450 MHz-es működési frekvenciájú, CDMA szabványú Hyndai Curitel telefont (szolgáltató az Ufa Sotelünk) használtak internetes modemként számítógépen. A sebesség persze NAGYON alacsony, de a kapcsolat abszolút stabil és problémamentes volt, ellentétben a különböző Beeline és Megafon modemekkel (ami nálunk is volt szolgálatban és nemsokára 3-4 hónap után szeméttelepre került) . Mellesleg, ha valaki akarja, teljesen lehetséges tesztelni az ilyen modemek működési minőségét. Nos, akkor trollkodj az interneten, úgy, mintha a kommunikáció minőségéről beszélne. Mellesleg, ha szükséges, közelítheti. De ez a beszélgetés nem erről szól.

És a macskáról

Ami a mikrohullámú sugárzást érzékelve (hőt is ad a testnek) kezdett időnként felmelegedni ennél a telefonnál, amikor bekapcsolták az adatok fogadására/továbbítására. Egyébként annak ellenére, hogy időnként elhajtották a telefontól, újra visszatért hozzá (ami egyébként élénken emlékeztetett minket azokra az emberekre, akik mondhatni összenőttek a mobiltelefonjukkal, sőt aludni, mellettük az ágyban tartani) . Egyébként a helyzet egy kecskére hasonlít. Azt mondják, hogy a kecskék, és különösen a kecskék, okos állatok. Így hát egyikük, amint a hegesztők elkezdték a munkát, folyamatosan jött, és szó szerint bámulta, és szó szerint bogaras szemekkel nézte a hegesztést... láthatóan egy új, számára eddig ismeretlen természeti jelenséget próbált megérteni. Mint néhány ember, valószínűleg ő is technológiai vezető volt, a technikai újítások támogatója. Hát persze a saját kecskeszemszögemből. A hegesztők beszéltek a tulajjal (aki természetesen nulla figyelmet fordított), elkergették, megrugdosták a kecskét - minden hiábavaló volt. Minden alkalommal, ahogy mondták, jön, feláll és megnézi (kb. pár méteres távolságból). És hamarosan szivárogni kezdett a szeme.

Tehát a telefon egy széken feküdt, a számítógéptől 1 m távolságra (a hálózati kábel már nem engedélyezett; most, miután megismerkedtünk a mikrohullámú sütő élő szervezetekre gyakorolt ​​hatásával kapcsolatos információkkal, nem használunk modemet ilyen kis távolságokon egyáltalán). Tehát a macska, érzékelve a meleget (és meg kell mondani, hogy a hőt, amely a mikrohullámú működése, „átszúrónak”, mint egy beborító meleg áramlást érzékeli - természetesen, ha a sugárzásnak elegendő ereje van), látható örömmel lefeküdt egy székre, telefonba dörzsölte a fejét, dorombolt, lefeküdt és hasra. Aztán, amikor módot találtak arra, hogy a telefont el lehessen venni a számítógéptől (kint), a macska elkezdett odamenni, és ismét lefeküdt mellé, amikor dolgozott. Így volt ez másfél évig. A telefonnal közvetlenül érintkezve a macska feje vagy gyomra 5...10 µA-nak megfelelő sugárzást kapott (a mikrohullámú mérőműszer fent tárgyalt skáláján). A heti sugárdózis körülbelül 5 óra volt. Ebben az időszakban a cicák gyakran holtan, betegeken, „furcsaságokkal” születtek (például gyomorsebbel, amely sokáig nem akart gyógyulni). Ráadásul a macska nehezen szülte meg őket, hangosan sikoltozott összehúzódások közben, különböző irányokba rohant a lakásban (bár korábban a szülés normálisan zajlott), ennek eredményeként a cicák szétszórva feküdtek a házban. Kevés egészséges cica volt. Aztán felhagytak ezzel a telefonnal, és egy másik, magasabb frekvencián működő internetes modemet használtak az internethez. És a macska valahogy elvesztette érdeklődését a mikrohullámú sugárzás iránt (úgy tűnik, megértőbbnek bizonyult, mint az emberi polgárok jelentős része). Ezt követően kiscicák kezdtek születni, látszólag minden probléma nélkül. Ma már sokkal kevesebb a halott és beteg ember. Igaz... egy furcsa tulajdonságot fejlesztett ki. Néha különböző helyeken szül cicákat. És nem siet megetetni őket, ha nincsenek a helyén. A cicák olyan sokáig fekhetnek ott nyávogva, amíg meg nem halnak. De ha elviszi őket a macskához, ő valahogy elégedetlenül eteti őket, mintha mi sem történt volna. Korábban persze néha különböző helyeken is hagyhatta őket. De legalább azért jött, hogy megetesse őket, függetlenül attól, hogy hol feküdtek. És most nem siet.

Azok. Anyai ösztöne rosszul működött; úgy tűnik, életem végéig. Egyébként hasonló kudarc figyelhető meg például az inkubátorban nevelt csirkéknél. Megkezdhetik a fiókák kikelését, látszólag a tojásokon ülve. Aztán minden látható ok nélkül egyszerűen hagyd abba, és felejtsd el. Ennek eredményeként a tojásokban lévő embriók fejletlenek és elhalnak. Az inkubátorban nevelt csirkék pedig tevékenységükben jelentősen eltérnek a csirke által kikeltektől: utóbbiak alig születnek – és alig lehet megfogni őket. És az inkubátorosok olyan csendesek...

Tehát azok az állítások, miszerint a macskák állítólag nem szeretik a mikrohullámú sugárzást, ostobaság. Mint kiderült, továbbra is szeretik, még saját maguk és utódaik kárára is (itt a dohányzással és más emberek szokásaival való hasonlat sugallja magát). Igaz, ez a 450 MHz-es sugárzásra vonatkozik, nem tudjuk, mi a helyzet a magasabb (károsabb) frekvenciákkal - 30...100 GHz-ig. Sőt, végül is kicsi dózisú mikrohullámú sugárzást még az orvostudományban is alkalmaznak. Mivel megállapítást nyert, hogy (a kezdeti szakaszban) hozzájárulnak a szervezet életfolyamatainak aktiválásához, hatékonyan felmelegíthetik a szerveket stb. Egyébként miért tetszett a macskának a telefon sugárzása? Véleményünk szerint itt az a lényeg, hogy minden (jelvételi és átviteli módban működő) mobiltelefon ne csak a fő frekvenciáját (jelen esetben 450 MHz-nek felel meg), hanem más, úgynevezett felső harmonikusokat is kibocsásson. Ezen felharmonikusok egy részének a frekvenciája a terahertzes (és esetleg magasabb) tartományba esik, pl. közel a spektrum infravörös tartományához. Nyilvánvalóan ezek az infravörös harmonikusok vonzották a macskát - eleinte, mert nem érezte azonnal a mikrohullámú sütő ártalmát. Igen, egyébként, hogy pontos legyek, az orvostudományban, i.e. a fizioterápiában nem mikrohullámú sugárzást alkalmaznak, hanem infravörös, 300 GHz feletti frekvenciákkal, amelyek a 0,5...50 GHz-es tartománytól eltérően gyógyító hatásúak lehetnek. Igaz, jobb, ha nem sokáig kísérletezünk az infravörös spektrum alacsony frekvenciájú részével (100...200 THz-ig). A peresztrojka (pontosabban a Szovjetunió lerombolása) idején olyan hírek jelentek meg a sajtóban, hogy például a kutatók készítettek hasonló generátorokat... majd maguk bontották le - a közelbe kerülteknél a betegségek kialakulása miatt. kapcsolatba lépni velük. A generátorok látszólag nem túl nagy teljesítménye ellenére. Ami a 300 THz feletti frekvenciájú sugárzást illeti, ez már közönséges hősugárzás, látható fény stb. Sokkal biztonságosabb. Igaz, csak az ultraibolya régióig. A magasabb frekvenciájú sugárzás ezzel szemben még ártalmasabb és pusztítóbb az élő szervezetekre (és az emberre is).

De - csak azért kezdeti szakaszban. Aztán minden fordítva van: a test elkezd összeomlani. Igaz, a pisztolylövéstől eltérően (amikor a test pusztulása azonnal megtörténik, és ezért azonnal nyilvánvaló), az alacsony teljesítményű mikrohullámú sugárzás fokozatosan hat, a „csepp kőbe ütközik” elve szerint, ezzel párhuzamosan funkcionális egyensúlyhiányt hozva a szervezetbe. test. Például, amikor megfelelő erősségű mikrohullámú sugárzás éri a szemlencsét, kezdetben mikrosérülések jelennek meg benne, amelyek a látást egyáltalán nem befolyásolják, ezért láthatatlanok. Idővel nagyobbak lesznek. De azt mondják, nincs itt semmi szörnyű. Nézzük a helyzetet: elvégre az ember nem örök. Addig is ott gyűlnek a különféle károk – és akkor ideje nyugdíjba vonulnia. Nos, ha már nyugdíjas vagy, mindenki azt fogja mondani: nézd meg az útleveled, és emlékezz arra, HOGYAN IS vagy. Tehát látja meg saját szemével, mennyire logikus és optimista minden.

Ezek a véletlenek... És mellesleg az elmúlt évtizedekben a következőket is felfedeztük: valahányszor felkel a nap, valamiért kivilágosodik. És amikor leáll, éppen ellenkezőleg, minden sötétségbe borul, és valamiért leszáll az éjszaka. Sőt, történészek, csillagászok és más tudósok arról számolnak be, hogy hasonló dolgokat korábban is megfigyeltek, sok ezer évvel ezelőtt... Szóval látjátok, mennyi különböző egybeesés van.

Tisztelettel önnek.




Top